Quiz-summary
0 of 20 questions completed
Pertanyaan:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
Information
Dear Students,
Welcome to today’s quiz! This is your opportunity to demonstrate what you’ve learned so far, so do your best. Please keep in mind that you have a maximum of 30 minutes to complete all the questions. Make sure to manage your time wisely and answer each question thoughtfully.
Good luck!
Anda telah menyelesaikan kuis sebelumnya. Oleh karena itu, Anda tidak dapat memulainya lagi.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Hasil
0 dari 20 pertanyaan terjawab dengan benar
Waktu Anda:
Time has elapsed
Anda telah meraih 0 dari 0 poin, (0)
Categories
- Not categorized 0%
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- Dijawab
- Ragu-Ragu
-
Pertanyaan 1 dari 20
1. Pertanyaan
1 pointsBentuk logaritma yang tidak terdefinisi adalah …
Benar
\(^a\log_{}{b}\) dengan \(a\) basis dan \(b\) numerus
1. Syarat basis, \(a > 0 \text{ dan } a \neq 1\)
2. Syarat numerus, \(b > 0\)Jadi logaritma yang tidak terdefinisi adalah \(^1\log 7\)
Salah
\(^a\log_{}{b}\) dengan \(a\) basis dan \(b\) numerus
1. Syarat basis, \(a > 0 \text{ dan } a \neq 1\)
2. Syarat numerus, \(b > 0\)Jadi logaritma yang tidak terdefinisi adalah \(^1\log 7\)
-
Pertanyaan 2 dari 20
2. Pertanyaan
1 pointsPenulisan \(10^4 = 10000\) dalam bentuk logaritma yang benar adalah …
Benar
\(a^c = b \rightarrow ^a\log_{}{b} = c\)
\(10^4 = 10000 \rightarrow ^{10}\log 10000 = 4 \text{ atau ditulis } \log 10000 = 4\)
catatan : basis 10 tidak ditulisSalah
\(a^c = b \rightarrow ^a\log_{}{b} = c\)
\(10^4 = 10000 \rightarrow ^{10}\log 10000 = 4 \text{ atau ditulis } \log 10000 = 4\)
catatan : basis 10 tidak ditulis -
Pertanyaan 3 dari 20
3. Pertanyaan
1 pointsJika \(^8\log_{}{p} = \dfrac{2}{3}\) maka nilai \(p = \dotso\)
Benar
\(^8\log_{}{p} = \dfrac{2}{3}\)
\(p = 8^{\frac{2}{3}}\)
\(p = 2^{3\times \frac{2}{3}}\)
\(p = 2^2\)
\(p = 4\)Salah
\(^8\log_{}{p} = \dfrac{2}{3}\)
\(p = 8^{\frac{2}{3}}\)
\(p = 2^{3\times \frac{2}{3}}\)
\(p = 2^2\)
\(p = 4\)Hint
\(^{\text{a}}\log_{}{\text{b}} = \text{c}\rightarrow \text{b} = \text{a}^{\text{c}}\) -
Pertanyaan 4 dari 20
4. Pertanyaan
1 pointsJika \(^a\log_{}{27} = 3\) maka nilai \(a = \dotso\)
Benar
\(^a\log_{}{27} = 3\)
\(27 = a^3\)
\(3^3 = a^3\)
\(a = 3\)Salah
\(^a\log_{}{27} = 3\)
\(27 = a^3\)
\(3^3 = a^3\)
\(a = 3\) -
Pertanyaan 5 dari 20
5. Pertanyaan
1 pointsJika \(^{64}\log y = -\frac{5}{6}\) maka nilai \(y = \dotso\)
Benar
\(^{64}\log_{}{y} = -\frac{5}{6}\)
\(^{2^6}\log_{}{y} = -\frac{5}{6}\)
\(y = (2^6)^{-\frac{5}{6}}\)
\(y = 2^{-5}\)
\(y = \frac{1}{2^5}\)
\(y = \frac{1}{32}\)Salah
\(^{64}\log_{}{y} = -\frac{5}{6}\)
\(^{2^6}\log_{}{y} = -\frac{5}{6}\)
\(y = (2^6)^{-\frac{5}{6}}\)
\(y = 2^{-5}\)
\(y = \frac{1}{2^5}\)
\(y = \frac{1}{32}\) -
Pertanyaan 6 dari 20
6. Pertanyaan
1 pointsNIlai dari \(^2\log_{}{0,125}\) adalah …
Benar
\(^2\log_{}{0,125} = ^2\log_{}{\dfrac{1}{8}}\)
\(^2\log_{}{0,125} = ^2\log_{}{\dfrac{1}{2^3}}\)
\(^2\log_{}{0,125} = ^2\log_{}{2^{-3}}\)
\(^2\log_{}{0,125} = -3\)Salah
\(^2\log_{}{0,125} = ^2\log_{}{\dfrac{1}{8}}\)
\(^2\log_{}{0,125} = ^2\log_{}{\dfrac{1}{2^3}}\)
\(^2\log_{}{0,125} = ^2\log_{}{2^{-3}}\)
\(^2\log_{}{0,125} = -3\) -
Pertanyaan 7 dari 20
7. Pertanyaan
1 points\(^7\log_{}{343} + ^2\log_{}{128}\:-\:\log_{}{1000} = \dotso\)
Benar
\(^7\log_{}{343} + ^2\log_{}{128}\:-\:\log_{}{1000}\)
\(^7\log_{}{7^3} + ^2\log_{}{2^7}\:-\:\log_{}{10^3}\)
\(3\cdot ^7\log_{}{7} + 7\cdot ^2\log_{}{2}\:-\:3\cdot \log_{}{10}\)
\(3 + 7 \:-\: 3\)
\(7\)Salah
\(^7\log_{}{343} + ^2\log_{}{128}\:-\:\log_{}{1000}\)
\(^7\log_{}{7^3} + ^2\log_{}{2^7}\:-\:\log_{}{10^3}\)
\(3\cdot ^7\log_{}{7} + 7\cdot ^2\log_{}{2}\:-\:3\cdot \log_{}{10}\)
\(3 + 7 \:-\: 3\)
\(7\) -
Pertanyaan 8 dari 20
8. Pertanyaan
1 pointsJika \(^6\log_{}{125} = k\cdot ^6\log_{}{5}\) maka nilai \(k = \dotso\)
Benar
\(^6\log_{}{125} = k\cdot ^6\log_{}{5}\)
\(^6\log_{}{5^3} = k\cdot ^6\log_{}{5}\)
\(3\cdot ^6\log_{}{5} = k\cdot ^6\log_{}{5}\)
\(k = 3\)Salah
\(^6\log_{}{125} = k\cdot ^6\log_{}{5}\)
\(^6\log_{}{5^3} = k\cdot ^6\log_{}{5}\)
\(3\cdot ^6\log_{}{5} = k\cdot ^6\log_{}{5}\)
\(k = 3\) -
Pertanyaan 9 dari 20
9. Pertanyaan
1 points\(^9\log_{}{3\sqrt{3}} = \dotso\)
Benar
\(^9\log_{}{3\sqrt{3}} = ^{3^2}\log_{}{3^{\frac{3}{2}}}\)
\(^9\log_{}{3\sqrt{3}} = \frac{\frac{3}{2}}{2}\cdot ^{3}\log_{}{3}\)
\(^9\log_{}{3\sqrt{3}} = \frac{3}{4}\cdot 1\)
\(^9\log_{}{3\sqrt{3}} = \frac{3}{4}\)Salah
\(^9\log_{}{3\sqrt{3}} = ^{3^2}\log_{}{3^{\frac{3}{2}}}\)
\(^9\log_{}{3\sqrt{3}} = \frac{\frac{3}{2}}{2}\cdot ^{3}\log_{}{3}\)
\(^9\log_{}{3\sqrt{3}} = \frac{3}{4}\cdot 1\)
\(^9\log_{}{3\sqrt{3}} = \frac{3}{4}\) -
Pertanyaan 10 dari 20
10. Pertanyaan
1 points\(^{9y}\log_{}{27y^{\frac{3}{2}}} = \dotso\)
Benar
\(^{9y}\log_{}{27y^{\frac{3}{2}}} = ^{9y}\log_{}{(9y)^{\frac{3}{2}}}\)
\(^{9y}\log_{}{27y^{\frac{3}{2}}} = \frac{3}{2}\cdot ^{9y}\log_{}{9y}\)
\(^{9y}\log_{}{27y^{\frac{3}{2}}} = \frac{3}{2}\cdot 1\)
\(^{9y}\log_{}{27y^{\frac{3}{2}}} = \frac{3}{2}\)Salah
\(^{9y}\log_{}{27y^{\frac{3}{2}}} = ^{9y}\log_{}{(9y)^{\frac{3}{2}}}\)
\(^{9y}\log_{}{27y^{\frac{3}{2}}} = \frac{3}{2}\cdot ^{9y}\log_{}{9y}\)
\(^{9y}\log_{}{27y^{\frac{3}{2}}} = \frac{3}{2}\cdot 1\)
\(^{9y}\log_{}{27y^{\frac{3}{2}}} = \frac{3}{2}\) -
Pertanyaan 11 dari 20
11. Pertanyaan
1 points\(^{x^2\cdot\sqrt{x}}\log_{}{(x^5\cdot\sqrt{x})} = \dotso\)
Benar
\(^{x^2\cdot\sqrt{x}}\log_{}{(x^5\cdot\sqrt{x})} = ^{x^{\frac{5}{2}}}\log_{}{x^{\frac{11}{2}}}\)
\(^{x^2\cdot\sqrt{x}}\log_{}{(x^5\cdot\sqrt{x})} = \frac{\frac{11}{2}}{\frac{5}{2}}\cdot ^x\log_{}{x}\)
\(^{x^2\cdot\sqrt{x}}\log_{}{(x^5\cdot\sqrt{x})} = \frac{11}{5}\cdot 1\)
\(^{x^2\cdot\sqrt{x}}\log_{}{(x^5\cdot\sqrt{x})} = 2,2\)Salah
\(^{x^2\cdot\sqrt{x}}\log_{}{(x^5\cdot\sqrt{x})} = ^{x^{\frac{5}{2}}}\log_{}{x^{\frac{11}{2}}}\)
\(^{x^2\cdot\sqrt{x}}\log_{}{(x^5\cdot\sqrt{x})} = \frac{\frac{11}{2}}{\frac{5}{2}}\cdot ^x\log_{}{x}\)
\(^{x^2\cdot\sqrt{x}}\log_{}{(x^5\cdot\sqrt{x})} = \frac{11}{5}\cdot 1\)
\(^{x^2\cdot\sqrt{x}}\log_{}{(x^5\cdot\sqrt{x})} = 2,2\) -
Pertanyaan 12 dari 20
12. Pertanyaan
1 points\(^5\log_{}{\frac{1}{5}} + \log_{}{10} + \log_{}{1} = \dotso\)
Benar
\(^5\log_{}{\frac{1}{5}} + \log_{}{10} + \log_{}{1}\)
\(^5\log_{}{5^{-1}} + 1 + 0\)
\(-1\cdot ^5\log_{}{5} + 1\)
\(-1 + 1\)
\(0\)Salah
\(^5\log_{}{\frac{1}{5}} + \log_{}{10} + \log_{}{1}\)
\(^5\log_{}{5^{-1}} + 1 + 0\)
\(-1\cdot ^5\log_{}{5} + 1\)
\(-1 + 1\)
\(0\) -
Pertanyaan 13 dari 20
13. Pertanyaan
1 points\(^9\log_{}{729} + ^{32}\log_{}{16}\:-\: ^{49}\log_{}{\frac{1}{343}} = \dotso\)
Benar
\(^9\log_{}{729} + ^{32}\log_{}{16}\:-\: ^{49}\log_{}{\frac{1}{343}}\)
\(^{3^2}\log_{}{3^6} + ^{2^5}\log_{}{2^4}\:-\: ^{7^2}\log_{}{\frac{1}{7^3}}\)
\(\frac{6}{2}\cdot ^{3}\log_{}{3} + \frac{4}{5}\cdot ^{2}\log_{}{2}\:-\: ^{7^2}\log_{}{7^{-3}}\)
\(3 + \frac{4}{5}\:-\: \frac{-3}{2}\cdot^{7}\log_{}{7}\)
\(3 + \frac{4}{5}\:-\: \frac{-3}{2}\)
\(5,3\)Salah
\(^9\log_{}{729} + ^{32}\log_{}{16}\:-\: ^{49}\log_{}{\frac{1}{343}}\)
\(^{3^2}\log_{}{3^6} + ^{2^5}\log_{}{2^4}\:-\: ^{7^2}\log_{}{\frac{1}{7^3}}\)
\(\frac{6}{2}\cdot ^{3}\log_{}{3} + \frac{4}{5}\cdot ^{2}\log_{}{2}\:-\: ^{7^2}\log_{}{7^{-3}}\)
\(3 + \frac{4}{5}\:-\: \frac{-3}{2}\cdot^{7}\log_{}{7}\)
\(3 + \frac{4}{5}\:-\: \frac{-3}{2}\)
\(5,3\) -
Pertanyaan 14 dari 20
14. Pertanyaan
1 points\(^2\log_{}{^3\log_{}{^3\log_{}{3^9}}} = \dotso\)
Benar
\(^2\log_{}{^3\log_{}{(9\cdot ^3\log_{}{3})}}\)
\(^2\log_{}{^3\log_{}{9}}\)
\(^2\log_{}{^3\log_{}{3^2}}\)
\(^2\log_{}{(2\cdot ^3\log_{}{3})}\)
\(^2\log_{}{2} = 1\)Salah
\(^2\log_{}{^3\log_{}{(9\cdot ^3\log_{}{3})}}\)
\(^2\log_{}{^3\log_{}{9}}\)
\(^2\log_{}{^3\log_{}{3^2}}\)
\(^2\log_{}{(2\cdot ^3\log_{}{3})}\)
\(^2\log_{}{2} = 1\) -
Pertanyaan 15 dari 20
15. Pertanyaan
1 points\(^3\log_{}{\log_{}{1000}} + ^5\log_{}{\log_{}{100000}} = \dotso\)
Benar
\(^3\log_{}{\log_{}{10^3}} + ^5\log_{}{\log_{}{10^5}}\)
\(^3\log_{}{(3\cdot \log_{}{10})} + ^5\log_{}{(5\cdot \log_{}{10})}\)
\(^3\log_{}{3} + ^5\log_{}{5}\)
\(1 + 1 = 2\)Salah
\(^3\log_{}{\log_{}{10^3}} + ^5\log_{}{\log_{}{10^5}}\)
\(^3\log_{}{(3\cdot \log_{}{10})} + ^5\log_{}{(5\cdot \log_{}{10})}\)
\(^3\log_{}{3} + ^5\log_{}{5}\)
\(1 + 1 = 2\) -
Pertanyaan 16 dari 20
16. Pertanyaan
1 points\(^{25}\log_{}{0,2} + ^4\log_{}{0,5} + ^2\log_{}{1} = \dotso\)
Benar
\(^{5^2}\log_{}{\frac{1}{5}} + ^{2^2}\log_{}{\frac{1}{2}} + ^2\log_{}{1}\)
\(^{5^2}\log_{}{5^{-1}} + ^{2^2}\log_{}{2^{-1}} + 0\)
\(\frac{-1}{2}\cdot ^{5}\log_{}{5} + \frac{-1}{2}\cdot ^{2}\log_{}{2}\)
\(\frac{-1}{2} + \frac{-1}{2} = -1\)Salah
\(^{5^2}\log_{}{\frac{1}{5}} + ^{2^2}\log_{}{\frac{1}{2}} + ^2\log_{}{1}\)
\(^{5^2}\log_{}{5^{-1}} + ^{2^2}\log_{}{2^{-1}} + 0\)
\(\frac{-1}{2}\cdot ^{5}\log_{}{5} + \frac{-1}{2}\cdot ^{2}\log_{}{2}\)
\(\frac{-1}{2} + \frac{-1}{2} = -1\) -
Pertanyaan 17 dari 20
17. Pertanyaan
1 points\(^{x^5}\log_{}{\sqrt{x}} + ^{x^2}\log_{}{(x^2\cdot \sqrt{x})} = \dotso\)
Benar
\(^{x^5}\log_{}{x^{\frac{1}{2}}} + ^{x^2}\log_{}{x^{\frac{5}{2}}}\)
\(\frac{\frac{1}{2}}{5}\cdot ^{x}\log_{}{x} + \frac{\frac{5}{2}}{2}\cdot ^{x}\log_{}{x}\)
\(\frac{1}{10} + \frac{5}{4}\)
\(\frac{27}{20} = 1,35\)Salah
\(^{x^5}\log_{}{x^{\frac{1}{2}}} + ^{x^2}\log_{}{x^{\frac{5}{2}}}\)
\(\frac{\frac{1}{2}}{5}\cdot ^{x}\log_{}{x} + \frac{\frac{5}{2}}{2}\cdot ^{x}\log_{}{x}\)
\(\frac{1}{10} + \frac{5}{4}\)
\(\frac{27}{20} = 1,35\) -
Pertanyaan 18 dari 20
18. Pertanyaan
1 pointsJika \(^8\log_{}{3} + ^{32}\log_{}{81} = k \cdot ^2\log_{}{3}\) maka nilai \(15k = \dotso\)
Benar
\(^{2^3}\log_{}{3^1} + ^{2^5}\log_{}{3^4} = k \cdot ^2\log_{}{3}\)
\(\frac{1}{3}\cdot ^{2}\log_{}{3} + \frac{4}{5}\cdot ^{2}\log_{}{3} = k \cdot ^2\log_{}{3}\)
\(\frac{17}{15}\cdot ^{2}\log_{}{3} = k \cdot ^2\log_{}{3}\)
\(k = \frac{17}{15}\)
\(15k = \cancel{15}\times \frac{17}{\cancel{15}} = 17\)Salah
\(^{2^3}\log_{}{3^1} + ^{2^5}\log_{}{3^4} = k \cdot ^2\log_{}{3}\)
\(\frac{1}{3}\cdot ^{2}\log_{}{3} + \frac{4}{5}\cdot ^{2}\log_{}{3} = k \cdot ^2\log_{}{3}\)
\(\frac{17}{15}\cdot ^{2}\log_{}{3} = k \cdot ^2\log_{}{3}\)
\(k = \frac{17}{15}\)
\(15k = \cancel{15}\times \frac{17}{\cancel{15}} = 17\) -
Pertanyaan 19 dari 20
19. Pertanyaan
1 points\(^{0,25}\log_{}{16} + ^{0,008}\log_{}{125} \:-\: ^{0,380}\log_{}{1} = \dotso\)
Benar
\(^{\frac{1}{4}}\log_{}{4^2} + ^{\frac{1}{125}}\log_{}{125} \:-\: ^{0,380}\log_{}{1}\)
\(^{4^{-1}}\log_{}{4^2} + ^{125^{-1}}\log_{}{125} \:-\: 0\)
\(\frac{2}{-1}\cdot ^{4}\log_{}{4} + \frac{1}{-1}\cdot ^{125}\log_{}{125}\)
\(-2 \:-\:1 = -3\)Salah
\(^{\frac{1}{4}}\log_{}{4^2} + ^{\frac{1}{125}}\log_{}{125} \:-\: ^{0,380}\log_{}{1}\)
\(^{4^{-1}}\log_{}{4^2} + ^{125^{-1}}\log_{}{125} \:-\: 0\)
\(\frac{2}{-1}\cdot ^{4}\log_{}{4} + \frac{1}{-1}\cdot ^{125}\log_{}{125}\)
\(-2 \:-\:1 = -3\) -
Pertanyaan 20 dari 20
20. Pertanyaan
1 pointsJika \(^x\log_{}{80} = ^{2x}\log_{}{10}\) maka nilai \(x = \dotso\)
Benar
\(^x\log_{}{80} = ^{2x}\log_{}{10}\)
Misal:
\(^x\log_{}{80} = k\)
\(80 = x^k\)\(^{2x}\log_{}{10} = k\)
\(10 = (2x)^k\)
\(10 = 2^k\cdot x^k\)
\(10 = 2^k\cdot 80\)
\(\frac{10}{80} = 2^k\)
\(\frac{1}{8} = 2^k\)
\(2^{-3} = 2^k\)
\(k = -3\)\(80 = x^k\)
\(80 = x^{-3}\)
\(80^{-\frac{1}{3}} = x\)
\(x = \frac{1}{\sqrt[3] {80}}\)Salah
\(^x\log_{}{80} = ^{2x}\log_{}{10}\)
Misal:
\(^x\log_{}{80} = k\)
\(80 = x^k\)\(^{2x}\log_{}{10} = k\)
\(10 = (2x)^k\)
\(10 = 2^k\cdot x^k\)
\(10 = 2^k\cdot 80\)
\(\frac{10}{80} = 2^k\)
\(\frac{1}{8} = 2^k\)
\(2^{-3} = 2^k\)
\(k = -3\)\(80 = x^k\)
\(80 = x^{-3}\)
\(80^{-\frac{1}{3}} = x\)
\(x = \frac{1}{\sqrt[3] {80}}\)
