Diketahui vektor \(\textbf{u} = \left(\begin{array}{c}a\\ b\end{array}\right)\) dan \(\textbf{v} = \left(\begin{array}{c}c\\ d\end{array}\right)\).
Perkalian skalar antara vektor \(\textbf{u}\) dan \(\textbf{v}\) dihitung sebagai berikut:
\(\left(\begin{array}{c}a\\ b\end{array}\right)\cdot \left(\begin{array}{c}c\\ d\end{array}\right) = ac + bd\)
Berapakah hasil \(\textbf{u}\cdot \textbf{u}\)?
\(\textbf{u}\cdot \textbf{u} = ||\textbf{u}||^2\)
Contoh Soal
Soal 1 Tentukan hasil perkalian skalar antara vektor \(\textbf{u} = \left(\begin{array}{c}-3\\ 2\end{array}\right)\) dan \(\textbf{v} = \left(\begin{array}{c}-5\\ 1\end{array}\right)\)
\(\left(\begin{array}{c}-3\\2\end{array}\right)\cdot \left(\begin{array}{c}-5\\1\end{array}\right) = (-3)(-5) + 2(1)\)
\(\left(\begin{array}{c}-3\\2\end{array}\right)\cdot \left(\begin{array}{c}-5\\1\end{array}\right) = 15 + 2 = 17\)
Soal 2
Tentukan hasil perkalian skalar antara vektor \(\textbf{u} = \left(\begin{array}{c}-1\\ 0\\2\end{array}\right)\) dan \(\textbf{v} = \left(\begin{array}{c}3\\8\\-5\end{array}\right)\)
\(\left(\begin{array}{c}-1\\ 0\\2\end{array}\right) \cdot \left(\begin{array}{c}3\\8\\-5\end{array}\right) = (-1)(3) + 0(8) + 2(-5)\)
\(\left(\begin{array}{c}-1\\ 0\\2\end{array}\right) \cdot \left(\begin{array}{c}3\\8\\-5\end{array}\right) = -3 + 0 \:-\:10 = -13\)