Perkalian Silang (Cross Product)

Perkalian silang antara vektor \(\textbf{a} = a_1\textbf{i} + a_2\textbf{j} + a_3\textbf{k}\) dengan \(\textbf{b} = b_1\textbf{i} + b_2\textbf{j} + b_3\textbf{k}\) dihitung sebagai berikut:

\(\textbf{a} \times \textbf{b} = \begin{vmatrix}\textbf{i}&\textbf{j}&\textbf{k}\\a_1 & a_2 & a_3\\b_1 & b_2 & b_3\end{vmatrix}\)

\(\textbf{a} \times \textbf{b} =\begin{vmatrix}a_2 & a_3\\ b_2 & b_3\end{vmatrix}\textbf{i}\:-\:\begin{vmatrix}a_1 & a_3\\ b_1 & b_3\end{vmatrix}\textbf{j} + \begin{vmatrix}a_1 & a_2\\ b_1 & b_2\end{vmatrix}\textbf{k}\)

\(\textbf{a} \times \textbf{b} =(a_2\cdot b_3\:-\:a_3\cdot b_2)\textbf{i}\:-\:(a_1\cdot b_3\:-\:a_3\cdot b_1)\textbf{j} + (a_1\cdot b_2\:-\:a_2\cdot b_1)\textbf{k}\)

Hasil perkalian silang antara vektor \(\textbf{a}\) dengan vektor \(\textbf{b}\) akan menghasilkan suatu vektor \(\textbf{c}\) yang tegak lurus terhadap kedua vektor tersebut.

 

Rendered by QuickLaTeX.com

 

Menentukan Luas Segitiga

 

Rendered by QuickLaTeX.com

 

\(\color{blue} \text{Luas Segitiga } = \dfrac{1}{2} \left|\overrightarrow{\text{AB}} \times \overrightarrow{\text{AC}}\right|\)

 

\(\overrightarrow{\text{AB}}=\textbf{b}\:-\:\textbf{a}\)

\(\overrightarrow{\text{AB}}=\left(\begin{array}{c}x_2\\ y_2\\z_2\end{array}\right) \:-\: \left(\begin{array}{c}x_1\\y_1\\z_1\end{array}\right)\)

\(\overrightarrow{\text{AC}}=\textbf{c}\:-\:\textbf{a}\)

\(\overrightarrow{\text{AC}}=\left(\begin{array}{c}x_3\\ y_3\\z_3\end{array}\right) \:-\: \left(\begin{array}{c}x_1\\y_1\\z_1\end{array}\right)\)

 

Contoh Soal

 

Soal 1

Tentukan perkalian silang antara vektor \(\textbf{a} = -\textbf{i} + 2\textbf{j} + 3\textbf{k}\) dengan \(\textbf{b} = 4\textbf{i} \:-\:\textbf{j} + 5\textbf{k}\)

 

Soal 2

Find the area of the triangle with vertices:

A (2, 0, -1)

B (3, -2, 0)

C (4, 4, 1)