Operasi penjumlahan dan pengurangan pada matriks hanya dapat dilakukan pada matriks-matriks yang berukuran sama.
$$\color{blue}\begin{bmatrix}a_{11} & a_{12} \\a_{21} & a_{22} \end{bmatrix} + \color{blue}\begin{bmatrix}b_{11} & b_{12} \\b_{21} & b_{22} \end{bmatrix} = \color{blue}\begin{bmatrix}a_{11} + b_{11} & a_{12} + b_{12} \\a_{21} + b_{21} & a_{22} + b_{22}\end{bmatrix}$$
$$\color{blue}\begin{bmatrix}a_{11} & a_{12} \\a_{21} & a_{22} \end{bmatrix} \:-\: \color{blue}\begin{bmatrix}b_{11} & b_{12} \\b_{21} & b_{22} \end{bmatrix} = \color{blue}\begin{bmatrix}a_{11} \:-\: b_{11} & a_{12} \:-\: b_{12} \\a_{21} \:-\: b_{21} & a_{22} \:-\: b_{22}\end{bmatrix}$$
CONTOH SOAL
Soal 1 \(\begin{bmatrix}2 & -1 \\0 & 5 \end{bmatrix} + \begin{bmatrix}3 & 6 \\-6 &-4 \end{bmatrix} =\dotso\)
\(\begin{bmatrix}2 & -1 \\0 & 5 \end{bmatrix} + \begin{bmatrix}3 & 6 \\-6 &-4 \end{bmatrix}\)
\(\begin{bmatrix}2 + 3 & -1 + 6\\0 \:-\:6 & 5\:-\:4 \end{bmatrix}\)
\(\color{red}\begin{bmatrix}5 & 5\\-6 & 1 \end{bmatrix}\)
Soal 2
\(\begin{bmatrix}1 & 3 & 4\\-1 & 2 & -2 \end{bmatrix} \:-\: \begin{bmatrix}1 & 0 & -5 \\3&2&1 \end{bmatrix} =\dotso\)
\(\begin{bmatrix}1 & 3 & 4\\-1 & 2 & -2 \end{bmatrix} \:-\: \begin{bmatrix}1 & 0 & -5 \\3&2&1 \end{bmatrix}\)
\(\begin{bmatrix}1\:-\:1 & 3\:-\:0 & 4 + 5\\-1\:-\:3 & 2\:-\:2 & -2\:-\:1 \end{bmatrix}\)
\(\color{red}\begin{bmatrix}0 & 3 & 9\\-4 & 0 & -3\end{bmatrix}\)
Soal 3
\(\begin{bmatrix}1 & 2 & 4\\4 & -1 & 0 \\ 1 & -4 & -9\end{bmatrix} + \begin{bmatrix}2 & 1 & -4\\-2 & 0 & 1 \\ 6 & 7 & 8\end{bmatrix} =\dotso\)
\(\begin{bmatrix}1 & 2 & 4\\4 & -1 & 0 \\ 1 & -4 & -9\end{bmatrix} + \begin{bmatrix}2 & 1 & -4\\-2 & 0 & 1 \\ 6 & 7 & 8\end{bmatrix}\)
\(\begin{bmatrix}1 + 2 & 2 + 1 & 4\:-\:4\\4\:-\:2 & -1 + 0 & 0 + 1 \\ 1 + 6 & -4 + 7 & -9 + 8\end{bmatrix} \)
\(\color{red} \begin{bmatrix}3 & 3 & 0\\2 & -1 & 1 \\ 7 & 3 & -1\end{bmatrix} \)