Bentuk \((a + b)^n\)
Segitiga Pascal
Angka-angka yang berada pada setiap baris segitiga pascal menunjukkan koefisien dari penjabaran \((a + b)^n\)
\begin{equation*}
\begin{split}
\color{purple}\text{Baris 1}\rightarrow (a + b)^0& = \color{gray} 1\\\\
\color{purple}\text{Baris 2}\rightarrow (a + b)^1& = \color{gray} a + b\\\\
\color{purple}\text{Baris 3}\rightarrow (a + b)^2& = \color{gray} a^2 + 2ab + b^2\\\\
\color{purple}\text{Baris 4}\rightarrow (a + b)^3& = \color{gray} a^3 + 3a^2b + 3ab^2 + b^3\\\\
\color{purple}\text{Baris 5}\rightarrow (a + b)^4& = \color{gray} a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4\\\\
\color{purple}\text{Baris 6}\rightarrow (a + b)^5& = \color{gray} a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5\\\\
\color{purple}\text{Baris 7}\rightarrow (a + b)^6& = \color{gray} a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6\\\\
\color{purple}\text{Baris 8}\rightarrow (a + b)^7& = \color{gray} a^7 + 7a^6b + 21a^5b^2 + 35a^4b^3 + 35a^3b^4 + 21a^2b^5 + 7ab^6 + b^7
\color{purple}\end{split}
\color{purple}\end{equation*}
Coba kita perhatikan pola penjabaran:
\((a + b)^5 = \color{gray} \color{blue}1\color{gray} a^5 + \color{blue}5\color{gray}a^4b + \color{blue}10\color{gray}a^3b^2 + \color{blue}10\color{gray}a^2b^3 + \color{blue}5\color{gray}ab^4 + \color{blue}1\color{gray}b^5\)
\(\color{blue} 1, 5, 10, 10, 5, 1\) disebut dengan koefisien, dan sesuai dengan angka-angka yang berada pada baris ke-6 segitiga pascal.
Suku pertama : \(\color{blue}a^5\)
Suku kedua : \(\color{blue}5a^4b \)
Suku ketiga : \(\color{blue}10a^3b^2\)
Suku keempat : \(\color{blue}10a^2b^3\)
Suku kelima : \(\color{blue}5ab^4\)
Suku keenam : \(\color{blue}b^5\)
Pangkat dari \(a\) memiliki pola menurun (selalu berkurang satu) dan diiringi juga dengan pangkat dari \(b\) dengan pola naik (selalu bertambah 1).
Pada penjabaran \((a + b)^5\), jumlah perpangkatan dari \(a\) dan \(b\) adalah 5.
Contoh Soal
Soal 1
Jabarkan \((x + 5)^3\)
\(\color{blue} (a + b)^3 = \color{blue} a^3 + 3a^2b + 3ab^2 + b^3\)
\begin{equation*}
\begin{split}
&(x + 5)^3= x^3 + 3\cdot x^2 \cdot 5 + 3 \cdot x \cdot 5^2 + 5^3\\\\
&(x + 5)^3= x^3 + 15x^2 + 75x + 125
\end{split}
\end{equation*}
Soal 2
Jabarkan \((x\:-\:4)^4\)
\(\color{blue} (a + b)^4 = \color{blue} a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4\)
\begin{equation*}
\begin{split}
&(x\:-\:4)^4 = [x + (-4)]^4\\\\
&(x\:-\:4)^4 = x^4 + 4\cdot x^3\cdot (-4) + 6\cdot x^2\cdot (-4)^2 + 4\cdot x \cdot (-4)^3 + (-4)^4 \\\\
&(x\:-\:4)^4 = x^4 \:- \:16x^3 + 96x^2\: – \:256x + 256
\end{split}
\end{equation*}
Soal 3
Jabarkan \((2x + 3y)^5\)
\(\color{blue} (a + b)^5 = \color{blue} a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5\)
\begin{equation*}
\begin{split}
(2x + 3y)^5& = (2x)^5 + 5\cdot (2x)^4\cdot 3y + 10\cdot (2x)^3\cdot (3y)^2 + 10\cdot (2x)^2\cdot (3y)^3 + 5\cdot 2x \cdot (3y)^4 + (3y)^5\\\\
(2x + 3y)^5& = 32x^5 + 240x^4y + 720x^3y^2 + 1080x^2y^3 + 810xy^4 + 243y^5
\end{split}
\end{equation*}
Soal 4
Jabarkan \((2m^2\: -\: n)^6\)
\(\color{blue} (a + b)^6 = \color{blue} a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6\)
\begin{equation*}
\begin{split}
(2m^2\: -\: n)^6& = [2m^2 + (- n)]^6\\\\
(2m^2\: -\: n)^6& = (2m^2)^6 + 6(2m^2)^5(- n) + 15(2m^2)^4(- n)^2 + 20(2m^2)^3(- n)^3 + 15(2m^2)^2(- n)^4 + 6(2m^2)(- n)^5 + (- n)^6\\\\
(2m^2\: -\: n)^6& = 64m^{12} \:-\: 192m^{10}n + 240m^8n^2 \:-\: 160m^6n^3 + 60m^4n^4\: – \:12m^2n^5 + n^6
\end{split}
\end{equation*}
Soal 5
Tentukan suku ketiga dari penjabaran \((3x + 5y)^4\)
\(\color{blue} (a + b)^4 = \color{blue} a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4\)
\begin{equation*}
\begin{split}
(3x + 5y)^4 & = (3x)^4 + 4(3x)^3(5y) + 6(3x)^2(5y)^2 + 4(3x)(5y)^3 + (5y)^4\\\\
\text{Suku ketiga}& = 6(3x)^2(5y)^2\\\\
\text{Suku ketiga}&= 6\cdot 3^2 \cdot x^2 \cdot 5^2 \cdot y^2\\\\
\text{Suku ketiga}&= 6\cdot 9 \cdot x^2 \cdot 25 \cdot y^2\\\\
\text{Suku ketiga}&= \color{blue} 1350x^2y^2
\end{split}
\end{equation*}
Soal 6
Tentukan suku kedua dari penjabaran \((1\:-\:2m)^5\)
\(\color{blue} (a + b)^5 = \color{blue} a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5\)
\begin{equation*}
\begin{split}
(1\:-\:2m)^5 & = 1^5 + 5(1)^4(-2m) + 10(1)^3(-2m)^2 + 10(1)^2(-2m)^3 + 5(1)(-2m)^4 + (-2m)^5\\\\
\text{Suku kedua}&= 5(1)^4(-2m)\\\\
\text{Suku kedua}&= \color{blue}-10m
\end{split}
\end{equation*}
Soal 7
Tentukan koefisien suku kelima dari penjabaran \((x + 4y)^6\)
\(\color{blue} (a + b)^6 = \color{blue} a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6\)
\begin{equation*}
\begin{split}
(x + 4y)^6 & = x^6 + 6x^5(4y)+ 15x^4(4y)^2 + 20x^3(4y)^3 + 15x^2(4y)^4 + 6x(4y)^5 + (4y)^6\\\\
\text{Suku kelima}& = 15x^2(4y)^4\\\\
\text{Suku kelima}& = 15\cdot x^2 \cdot 4^4 \cdot y^4\\\\
\text{Suku kelima}& = 15\cdot x^2 \cdot 256 \cdot y^4\\\\
\text{Suku kelima}& = \color{blue}3840 \color{black}\cdot x^2y^4\\\\
\text{Koefisien suku kelima}& = \color{blue}3840
\end{split}
\end{equation*}
Soal 8
Tentukan koefisien suku keempat dari penjabaran \((m \:-\: 3n^2)^7\)
\(\color{blue} (a + b)^7 = \color{blue} a^7 + 7a^6b + 21a^5b^2 + 35a^4b^3 + 35a^3b^4 + 21a^2b^5 + 7ab^6 + b^7\)
\begin{equation*}
\begin{split}
(m \:-\: 3n^2)^7 & = m^7 + 7m^6(- 3n^2) + 21m^5(- 3n^2) ^2 + 35m^4(- 3n^2) ^3 + 35m^3(- 3n^2) ^4 + 21m^2(- 3n^2) ^5 + 7m(- 3n^2) ^6 + (- 3n^2) ^7\\\\
\text{Suku keempat}&= 35m^4(- 3n^2) ^3 \\\\
\text{Suku keempat}&= 35\cdot m^4(- 3)^3n^6 \\\\
\text{Suku keempat}&= 35\cdot m^4(-27) n^6 \\\\
\text{Suku keempat}&= \color{blue}-945\color{black}\cdot m^4n^6\\\\
\text{Koefisien suku keempat}& = \color{blue}-945
\end{split}
\end{equation*}