Sederhanakan dan nyatakan dalam perpangkatan positif bentuk \(\left(\dfrac{60}{15}\right)^7 \div \left(\dfrac{162}{40}\right)^5 \times \left(\dfrac{32}{150}\right)^3\)
Buatlah faktorisasi prima untuk masing-masing angka
\(\dfrac{(2^2\cdot 3 \cdot 5)^7}{(3\cdot 5)^7}\div \dfrac{(2\cdot 3^4)^5}{(2^3\cdot 5)^5}\times \dfrac{(2^5)^3}{(2\cdot 3\cdot 5^2)^3}\)
\(\dfrac{2^{14}\cdot \cancel{3^7\cdot 5^7}}{\cancel{3^7\cdot 5^7}}\div \dfrac{2^5\cdot 3^{20}}{2^{15}\cdot 5^5}\times \dfrac{2^{15}}{2^3\cdot 3^3\cdot 5^6}\)
\(2^{14}\times \dfrac{2^{15}\cdot 5^5}{2^5\cdot 3^{20}}\times \dfrac{2^{15-3}}{3^3\cdot 5^6}\)
\(2^{14}\times 2^{15-5} \cdot 3^{-20} \cdot 5^5 \times 2^{12}\cdot 3^{-3}\cdot 5^{-6}\)
\(2^{14}\cdot 2^{10}\cdot 2^{12}\cdot 3^{-20}\cdot 3^{-3}\cdot 5^5\cdot 5^{-6}\)
\( 2^{14+10+12}\cdot 3^{-20-3}\cdot 5^{5-6}\)
\(2^{36}\cdot 3^{-23}\cdot 5^{-1}\)
\(\dfrac{2^{36}}{3^{23}\cdot 5}\)