$$\bbox[yellow, 5px, border: 2px solid red] {\text{R} = \rho \dfrac{l}{\text{A}}}$$
Keterangan:
\(\text{R} = \text{ hambatan kawat penghantar (ohm)}\)
\(\rho = \text{ hambat jenis kawat}\)
\(l = \text{ panjang kawat penghantar}\)
\(\text{A} = \pi r^2 \text{ luas penampang kawat (luas lingkaran)}\)
LATIHAN SOAL
Soal 01
Suatu kawat penghantar panjangnya 2 meter memiliki luas penampang kawat \(5,5 \times 10^{-2}\) mm². Jika hambat jenis kawat \(5,5 \times 10^{-8}\:\Omega \text{ m}\) maka tentukan hambatan kawat penghantar tersebut.
\(\text{R} = \rho \dfrac{l}{\text{A}}\)
\(\text{A} = 5,5 \times 10^{-2}\) mm² = \(5,5 \times 10^{-8}\) m²
\(\text{R} =\cancel{ 5,5 \times 10^{-8}} \cdot \dfrac{2}{\cancel{5,5 \times 10^{-8}}}\)
\(\text{R} = 2 \:\Omega\)
Soal 02
Dua buah kawat penghantar terbuat dari bahan yang sama, panjang kawat pertama empat kali kawat kedua, sedang diameter kawat kedua dua kali diameter kawat pertama. Jika kawat pertama mempunyai hambatan 32 ohm, tentukan hambatan kawat kedua.
\(\rho_1 = \rho_2\) (kedua kawat terbuat dari bahan yang sama)
\(l_1 = 4\cdot l_2\)
\(d_2 = 2\cdot d_1\)
\(\text{R}_1 = 32 \:\Omega\)
\(\text{R}_2 = \text{ ?}\)
\(\dfrac{\text{R}_1}{\text{R}_2} = \dfrac{\cancel{\rho_1} \cdot \dfrac{l_1}{\cancel{\frac{1}{4}\pi} d_1 ^2}}{\cancel{\rho_2} \cdot \dfrac{l_2}{\cancel{\frac{1}{4}\pi} d_2 ^2}}\)
\(\dfrac{\text{R}_1}{\text{R}_2} = \dfrac{\dfrac{l_1}{ d_1 ^2}}{\dfrac{l_2}{d_2 ^2}}\)
\(\dfrac{32}{\text{R}_2} = \dfrac{\dfrac{4\cdot l_2}{ d_1 ^2}}{\dfrac{l_2}{(2\cdot d_1) ^2}}\)
\(\dfrac{32}{\text{R}_2} = \dfrac{\dfrac{4}{1}}{\dfrac{1}{4}}\)
\(\dfrac{32}{\text{R}_2} = 16\)
\(\text{R}_2 = \dfrac{32}{16} = 2 \:\Omega\)
Soal 03
Kawat X dan Y terbuat dari logam sejenis, tetapi diameter kawat X adalah 3 kali diameter kawat Y. Tentukan perbandingan hambatan kawat X terhadap kawat Y jika panjang kawat X adalah 2 kali panjang kawat Y.
\(\rho_x = \rho_y\) (kedua kawat terbuat dari bahan yang sama)
\(l_x = 2\cdot l_y\)
\(d_x = 3\cdot d_y\)
\(\text{R}_1 : \text{R}_2 = \text{ ?}\)
\(\dfrac{\text{R}_x}{\text{R}_y} = \dfrac{\cancel{\rho_x} \cdot \dfrac{l_x}{\cancel{\frac{1}{4}\pi} d_x ^2}}{\cancel{\rho_y} \cdot \dfrac{l_y}{\cancel{\frac{1}{4}\pi} d_y ^2}}\)
\(\dfrac{\text{R}_x}{\text{R}_y} = \dfrac{\dfrac{l_x}{ d_x ^2}}{\dfrac{l_y}{d_y ^2}}\)
\(\dfrac{\text{R}_x}{\text{R}_y} = \dfrac{\dfrac{2\cdot l_y}{ (3\cdot d_y) ^2}}{\dfrac{l_2}{d_2 ^2}}\)
\(\dfrac{\text{R}_x}{\text{R}_y} = \dfrac{\dfrac{2}{9}}{\dfrac{1}{1}}\)
\(\text{R}_x : \text{R}_y = 2 : 9\)