Pemfaktoran dan Penjabaran Bentuk (a ± b)²
\(\color{blue} (a + b)^2 = a^2 + 2ab + b^2\)
\(\color{blue} (a\: – \:b)^2 = a^2\: – \:2ab + b^2\)
Contoh Soal
Soal 1
Faktorkan \(x^2 + 8x + 16\)
\begin{equation*}
\begin{split}
x^2 + 8x + 16& = x^2 + 2\cdot x \cdot 4 + 4^2\\\\
& = (x + 4)^2
\end{split}
\end{equation*}
Soal 2
Faktorkan \(x^2 \:- \:10x + 25\)
\begin{equation*}
\begin{split}
x^2 \:-\: 10x + 25& = x^2 \:- \:2\cdot x \cdot 5 + 5^2\\\\
& = (x \:- \:5)^2
\end{split}
\end{equation*}
Soal 3
Faktorkan \(x^2 + 22x + 121\)
\begin{equation*}
\begin{split}
x^2 + 22x + 121 & = x^2 + 2\cdot x \cdot 11 + 11^2\\\\
& = (x + 11)^2
\end{split}
\end{equation*}
Soal 4
Faktorkan \(4x^2 + 4x + 1\)
\begin{equation*}
\begin{split}
4x^2 + 4x + 1 & = (2x)^2 + 2\cdot 2x \cdot 1 + 1^2\\\\
& = (2x + 1)^2
\end{split}
\end{equation*}
Soal 5
Faktorkan \(9x^2\:-\:12x + 4\)
\begin{equation*}
\begin{split}
9x^2\:-\:12x + 4& = (3x)^2 \:-\: 2\cdot 3x \cdot 2 + 2^2\\\\
& = (3x\:-\: 2)^2
\end{split}
\end{equation*}
Soal 6
Faktorkan \(1\:-\:14x + 49x^2\)
\begin{equation*}
\begin{split}
1\:-\:14x + 49x^2& = 1^2\:-\: 2\cdot 1 \cdot 7x + (7x)^2\\\\
& = (1\:-\: 7x)^2
\end{split}
\end{equation*}
Soal 7
Jabarkan \((x+15)^2\)
\begin{equation*}
\begin{split}
(x+15)^2 & = x^2 + 2\cdot x \cdot 15 + 15^2\\\\
& = x^2 + 30x + 225
\end{split}
\end{equation*}
Soal 8
Jabarkan \((2\:-\:5y)^2\)
\begin{equation*}
\begin{split}
(2\:-\:5y)^2& = 2^2 \:-\:2\cdot 2 \cdot 5y + (5y)^2\\\\
& = 4\:-\:20y + 25y^2
\end{split}
\end{equation*}
Soal 9
Jabarkan \((6x\:-\:y)^2\)
\begin{equation*}
\begin{split}
(6x\:-\:y)^2& = (6x)^2\:-\:2(6x)(y) + y^2\\\\
& = 36x^2 \:-\: 12xy + y^2
\end{split}
\end{equation*}
Soal 10
Jabarkan \((xy + 5r)^2\)
\begin{equation*}
\begin{split}
(xy + 5r)^2& = (xy)^2 +2\cdot xy \cdot 5r + (5r)^2\\\\
& = x^2y^2 + 10xyr + 25r^2
\end{split}
\end{equation*}
Soal 11
Jabarkan \((2mn \:-\: 8p)^2\)
\begin{equation*}
\begin{split}
(2mn \:-\: 8p)^2& = (2mn)^2\: -\; 2\cdot 2mn \cdot 8p + (8p)^2\\\\
& = 2^2m^2n^2 \:-\:32mnp + 8^2p^2\\\\
& = 4m^2n^2 \:-\:32mnp + 64p^2
\end{split}
\end{equation*}
Soal 12
Jabarkan \((x^2 + y)^2\)
\begin{equation*}
\begin{split}
(x^2 + y)^2& = (x^2)^2 + 2\cdot x^2 \cdot y + y^2\\\\
& = x^4 + 2x^2y + y^2
\end{split}
\end{equation*}
Soal 13
Faktorkan \(x^2 + 16xy + 64y^2\)
\begin{equation*}
\begin{split}
x^2 + 16xy + 64y^2& = x^2 + 2\cdot x \cdot 8y + (8y)^2\\\\
& = (x + 8y)^2
\end{split}
\end{equation*}
Soal 14
Faktorkan \(9x^2 \:-\: 18xy + 9y^2\)
\begin{equation*}
\begin{split}
9x^2 – 18xy + 9y^2& = (3x)^2 \:-\: 2\cdot 3x \cdot 3y + (3y)^2\\\\
& = (3x \:-\:3y)^2
\end{split}
\end{equation*}
Soal 15
Faktorkan \(9m^2n^2 \:-\: 30mnr + 25r^2\)
\begin{equation*}
\begin{split}
9m^2n^2 \:-\: 30mnr + 25r^2& = (3mn)^2\: – \:2\cdot 3mn \cdot 5r + (5r)^2\\\\
& = (3mn\:-\:5r)^2
\end{split}
\end{equation*}
Soal 16
Jabarkan \((-x^3 \:- \: y^5)^2\)
\begin{equation*}
\begin{split}
(-x^3 \:-\: y^5)^2& = [-(x^3 + y^5)]^2\:\:\:\:\:\color{blue} (-1)^2 = 1\\\\
& = (x^3 + y^5)^2\\\\
& = (x^3)^2 + 2\cdot x^3 \cdot y^5 + (y^5)^2\:\:\:\:\:\color{blue} (a^m)^n = a^{m\times n}\\\\
& = x^6 + 2x^3y^5 + y^{10}
\end{split}
\end{equation*}
Soal 17
Jabarkan \((4m^7\:-\: 5n^3)^2\)
\begin{equation*}
\begin{split}
(4m^7 \:-\: 5n^3)^2& = (4m^7)^2\: – \:2\cdot 4m^7 \cdot 5n^3 + (5n^3)^2\\\\
& = 4^2m^{14}\:-\: 40m^7n^3 + 5^2n^6\\\\
& = 16m^2n^{14} \:-\:40m^7n^3 + 25n^6
\end{split}
\end{equation*}
Soal 18
Jabarkan \((\dfrac{3}{5}x^3 \: – \:\dfrac{5}{9}y^3)^2\)
\begin{equation*}
\begin{split}
(\dfrac{3}{5}x^3 \:-\: \dfrac{5}{9}y^3)^2& = \left(\dfrac{3}{5}x^3\right)^2 \:- \: 2\cdot \dfrac{3}{5}x^3 \cdot \dfrac{5}{9}y^3 + \left(\dfrac{5}{9}y^3\right)^2\\\\
& = \dfrac{3^2}{5^2}x^6 \: – \:2\cdot \dfrac{\cancel{3}}{\cancel{5}} \cdot \dfrac{\cancel{5}}{\cancelto{3}{9}}x^3y^3 + \dfrac{5^2}{9^2}y^6\\\\
& = \dfrac{9}{25}x^6\: – \:\dfrac{2}{3}x^3y^3 + \dfrac{25}{81}y^6
\end{split}
\end{equation*}
Soal 19
Faktorkan \(\dfrac{2}{x^2}\: – \:2 + \dfrac{x^2}{2}\)
\begin{equation*}
\begin{split}
\dfrac{2}{x^2} \: – \:2 + \dfrac{x^2}{2}& = \left(\dfrac{\sqrt{2}}{x}\right)^2\: – \: 2\cdot \cancel{\dfrac{\sqrt{2}}{x}}\cdot \cancel{\dfrac {x}{\sqrt{2}}} + \left(\dfrac{x}{\sqrt{2}}\right)^2\\\\
& = \left(\dfrac{\sqrt{2}}{x} \: – \: \dfrac{x}{\sqrt{2}}\right)^2\\\\
& = \left(\dfrac{\sqrt{2}}{x}\: – \: \dfrac{x}{\sqrt{2}}\times \color{blue} \dfrac{\sqrt{2}}{\sqrt{2}}\right)^2\\\\
& = \left(\dfrac{\sqrt{2}}{x} \: – \: \dfrac{1}{2}x\sqrt{2}\right)^2\\\\
\end{split}
\end{equation*}
Soal 20
Faktorkan \(\dfrac{m^6}{n^2} + 2m^2n^2 + \dfrac{n^6}{m^2}\)
\begin{equation*}
\begin{split}
\dfrac{m^6}{n^2} + 2m^2n^2 + \dfrac{n^6}{m^2}& = \left(\dfrac{m^3}{n}\right)^2 + 2\cdot \dfrac{\cancelto{\color{red}m^2\color{black}}{m^3}}{\cancel{n}} \cdot \dfrac{\cancelto{\color{red}n^2\color{black}}{n^3}}{\cancel{m}} + \left(\dfrac{n^3}{m}\right)^2\\\\
& = \left(\dfrac{m^3}{n} + \dfrac{n^3}{m}\right)^2
\end{split}
\end{equation*}
Soal 21
Faktorkan \(\dfrac{25m^4n^2}{3}\:-\:2n + \dfrac{3}{25m^4}\)
\begin{equation*}
\begin{split}
\dfrac{25m^4n^2}{3}\:-\: 2n + \dfrac{3}{25m^4}& = \left(\dfrac{5m^2n}{\sqrt{3}}\right)^2\: – \:2\cdot \dfrac{\cancel{5m^2}n}{\cancel{\sqrt{3}}}\cdot \dfrac{\cancel{\sqrt{3}}}{\cancel{5m^2}} + \left(\dfrac{\sqrt{3}}{5m^2}\right)^2\\\\
& = \left(\dfrac{5m^2n}{\sqrt{3}}\: – \:\dfrac{\sqrt{3}}{5m^2}\right)^2\\\\
& = \left(\dfrac{5m^2n}{\sqrt{3}}\times \color{blue} \dfrac{\sqrt{3}}{\sqrt{3}} \color{black} – \dfrac{\sqrt{3}}{5m^2}\right)^2\\\\
& = \left(\dfrac{5m^2n\sqrt{3}}{3} \: – \:\dfrac{\sqrt{3}}{5m^2}\right)^2
\end{split}
\end{equation*}
Soal 22
Faktorkan \(\left(\sqrt{2}m^2n \: – \:\dfrac{1}{mn^2}\right)^2\)
\begin{equation*}
\begin{split}
\left(\sqrt{2}m^2n\: -\: \dfrac{1}{mn^2}\right)^2& = \left(\sqrt{2}m^2n \right)^2 \: – \:2\cdot \sqrt{2}m^2n \cdot \dfrac{1}{mn^2} + \left(\dfrac{1}{mn^2}\right)^2\\\\
& = 2m^4n^2\: – \:\dfrac{2\sqrt{2}m}{n} + \dfrac{1}{m^2n^4}
\end{split}
\end{equation*}
Soal 23
Faktorkan \(\left(\dfrac{4x^2}{y} + \dfrac{y^2}{4x}\right)^2\)
\begin{equation*}
\begin{split}
\left(\dfrac{4x^2}{y} + \dfrac{y^2}{4x}\right)^2& = \left(\dfrac{4x^2}{y}\right)^2 + 2 \cdot \dfrac{4x^2}{y}\cdot \dfrac{y^2}{4x} + \left(\dfrac{y^2}{4x}\right)^2\\\\
& = \dfrac{16x^4}{y^2} + 2\cdot \dfrac{\cancelto{\color{red} x \color{black}}{4x^2}}{\cancel{y}} \cdot \dfrac{\cancelto{\color{red} y \color{black}}{y^2}}{\cancel{4x}} + \dfrac{y^4}{16x^2}\\\\
& = \dfrac{16x^4}{y^2} + 2xy + \dfrac{y^4}{16x^2}
\end{split}
\end{equation*}
Soal 24
Faktorkan \((\sqrt[3]{x}\: – \:\sqrt[3]{y})^2\)
\begin{equation*}
\begin{split}
(\sqrt[3]{x} \: – \: \sqrt[3]{y})^2& = (x^{\frac{1}{3}})^2 \: – \: 2\cdot x^{\frac{1}{3}} \cdot y^{\frac{1}{3}} + (y^{\frac{1}{3}})^2\\\\
& = x^{\frac{2}{3}}\: – \: 2\cdot (xy)^{\frac{1}{3}} + y^{\frac{2}{3}}\\\\
& = \sqrt[3]{x^2} \: – \: 2 \sqrt[3]{xy} + \sqrt[3]{y^2}
\end{split}
\end{equation*}