Operasi Bilangan Kompleks

Bilangan dari bentuk \(a + bi\) dengan \(a\) dan \(b\) adalah bilangan riil disebut dengan bilangan kompleks.

\(i\) = imajiner

\(\color{blue} i = \sqrt{-1}\)

\(\color{blue} i^2 = -1\)

Cara Penulisan

Contoh 1:

\(3 + \sqrt{-4}\)

\(3 + \sqrt{4 \times -1}\)

\(3 + 2\sqrt{-1}\)

\(3 + 2i\)

Contoh 2:

\(7 \:-\: \sqrt{-25}\)

\(7 \:-\: \sqrt{25 \times -1}\)

\(7 \:-\: 5\sqrt{-1}\)

\(7 \:-\: 5i\)

Penjumlahan dan Pengurangan

\(\color{blue} a + bi + c + di = (a + c) + (b + d)i\)

\(\color{blue} a + bi\:-\:(c + di) = (a\:-\:c) + (b\:-\:d)i\)

Contoh 1

Nyatakan dalam bentuk \(a + bi\)

\(12 + 5i + 3 + 2i \:-\: (10 + 4i)\)

\(12 + 5i + 3 + 2i \:-\:10 \:-\:4i\)

\(12 + 3 \:-\:10 + (5 + 2\:-\:4)i\)

\(5 + 3i\)

Contoh 2

Nyatakan dalam bentuk \(a + bi\)

\(6i\:-\:(2\:-\:3i) + 10 + 5i\)

\(6i\:-\:2 + 3i + 10 + 5i\)

\(-2 + 10 + (6 + 3 + 5)i\)

\(8 + 14i\)

Perkalian

\(\color{blue} (a + bi)(c + di)\)

\(\color{blue} ac + (ad + bc)i + bdi^2\)

\(\color{blue} ac + (ad + bc)i \:-\:bd\)

Catatan: \(\color{blue} i^2 = -1\)

Contoh 1

Nyatakan dalam bentuk \(a + bi\)

\((3 + 5i)^2\)

\(3^2 + 2\cdot 3 \cdot 5i + (5i)^2\)

\(9 + 30i + 25i^2\)

\(9 + 30i \:-\:25\)

\(-16 + 30i\)

Contoh 2

Nyatakan dalam bentuk \(a + bi\)

\((3\:-\:6i)(8 + 2i)\)

\(24 + 6i\:-\:48i\:-\:12i^2\)

\(24 \:-\:42i + 12\)

\(36\:-\:42i\)

Pembagian

\(\color{blue} \dfrac{a + bi}{c} = \dfrac{a}{c} + \dfrac{b}{c}i\)

Contoh 1

\(\dfrac{12 + 4i}{2}\)

\(\dfrac{12}{2} + \dfrac{4}{2}i\)

\(6 + 2i\)

\(\color{blue} \dfrac{a + bi}{ci}\)

Kalikan pembilang dan penyebut dengan \(i\)

\(\color{blue} \dfrac{(a + bi)\cdot \color{red}i}{ci\cdot \color{red}i}\)

\(\color{blue} \dfrac{ai + bi^2}{ci^2}\)

\(\color{blue} \dfrac{ai \:-\:b}{-c}\)

\(\color{blue} \dfrac{ai}{-c} + \dfrac{-b}{-c}\)

\(\color{blue} \dfrac{b}{c}\:-\:\dfrac{a}{c}i\)

Contoh 2

\(\dfrac{6 + 9i}{3i}\)

\(\dfrac{(6 + 9i)\cdot \color{red}i}{3i\cdot \color{red}i}\)

\(\dfrac{6i + 9i^2}{3i^2}\)

\(\dfrac{6i\:-\:9}{-3}\)

\(\dfrac{6i}{-3} + \dfrac{-9}{-3}\)

\(-2i + 3\)

\(3\:-\:2i\)

\(\color{blue} \dfrac{a + bi}{c + di}\)

Kalikan pembilang dan penyebut dengan \(c\:-\:di\)

\(\color{blue} \dfrac{a + bi}{c + di}\times \color{red} \dfrac{c\:-\:di}{c\:-\:di}\)

\(\color{blue} \dfrac{(a + bi)(c\:-\:di)}{(c + di)(c\:-\:di)}\)

\(\color{blue} \dfrac{ac\:-\:adi + bci\:-\:bdi^2}{c^2\:-\:cdi + cdi \:-\:d^2i^2}\)

\(\color{blue} \dfrac{ac + (bc\:-\:ad)i+ bd}{c^2 + d^2}\)

\(\color{blue} \dfrac{(ac + bd) + (bc\:-\:ad)i}{c^2 + d^2}\)

Contoh 3a

\(\dfrac{10 + 4i}{5 + 2i}\)

\(\dfrac{10 + 4i}{5 + 2i}\times \color{red} \dfrac{5\:-\:2i}{5\:-\:2i}\)

\(\dfrac{(10 + 4i)(5\:-\:2i)}{(5 + 2i)(5\:-\:2i)}\)

\(\dfrac{50\:-\:20i + 20i\:-\:8i^2}{25\:-\:4i^2}\)

\(\dfrac{50 + 8}{25 + 4}\)

\(\dfrac{58}{29}\)

\(2\)

Contoh 3b

\(\dfrac{8 + 3i}{2\:-\:5i}\)

\(\dfrac{8 + 3i}{2\:-\:5i}\times \color{red} \dfrac{2 + 5i}{2 + 5i}\)

\(\dfrac{(8 + 3i)(2 + 5i)}{(2\:-\:5i)(2 + 5i)}\)

\(\dfrac{16 + 40i + 6i + 15i^2}{4\:-\:25i^2}\)

\(\dfrac{16 + 46i \:-\:15}{4 + 25}\)

\(\dfrac{1 + 46i}{29}\)

\(\dfrac{1}{29} + \dfrac{46}{29}i\)

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *