Latihan Integral Trigonometri

Soal 01

Pernyataan berikut yang benar adalah

(1)  \(\color{green}\int \cos  4x \text{ dx} = \dfrac{1}{4} \sin 4x + \text{ c}\)

(2)  \(\color{green}\int \sin 4x \text{ dx} = \dfrac{1}{4} \cos 4x + \text{ c}\)

(3)  \(\color{green}\int \csc^2 4x \text{ dx} = \dfrac{1}{4} \cot 4x + \text{ c}\)

(4)  \(\color{green}\int \sec 4x \cdot \tan 4x \text{ dx} = \dfrac{1}{4} \sec 4x + \text{ c}\)

 

(A)  (1), (2), (3), (4)

(B)  (1), (2), (3)

(C)  (1), (2), (3)

(D)  (1), (4)

(E)  (2), (4)

 

Soal 02

\(\color{green}\int \left(10\sin 3x \:-\: \sec^{2} \dfrac{1}{4}x \right) \text{ dx} = \dotso\)

 

Soal 03

\(\color{green}\int \left(6\csc 5x \cdot \cot 5x \right) \text{ dx} = \dotso\)

 

Soal 04

\(\color{green}\int \left(6\cos 4x \cdot \cos 2x \right) \text{ dx} = \dotso\)

 

Soal 05

\(\color{green}\int \left(6\sin 8x \cdot \sin2x \right) \text{ dx} = \dotso\)

 

Soal 06

\(\color{green}\int 5\cos^2 4x \text{ dx} = \dotso\)

 

Soal 07

\(\color{green}\int (\sec 3x \:-\: \tan 3x)^2 \text{ dx} = \dotso\)

 

Soal 08

\(\color{green}\int \left(\dfrac{8\cos x \:-\: \sin x}{2 \cos x + 3 \sin x}\right)\text{ dx} = \dotso\)

 

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *