Menentukan Determinan Matriks Berukuran 2 × 2
\(\color{blue}\textbf{A} = \begin{bmatrix}a_{11} & a_{12} \\a_{21} & a_{22} \end{bmatrix}\)
Determinan matriks A ditulis |A| diperoleh dengan mengurangkan hasil perkalian entri pada diagonal pertama dengan perkalian entri pada diagonal kedua.
\(|\textbf{A}| = a_{11}\cdot a_{22}\:-\:a_{12} \cdot a_{21}\)
Contoh:
\(\textbf{A} = \begin{bmatrix}2 & -5 \\3 & 1 \end{bmatrix}\)
\(|\textbf{A}| = 2\cdot 1\:-\:(-5) \cdot 3\)
\(|\textbf{A}| = 2 + 15\)
\(|\textbf{A}| = 17\)
Menentukan Determinan Matriks Berukuran 3 × 3
\(\color{blue}\textbf{B} = \begin{bmatrix}b_{11} & b_{12} & b_{13} \\b_{21} & b_{22}& b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}\) Determinan matriks B ditulis |B| Tambahkan dua kolom pertama pada matriks B \(\color{blue}\begin{bmatrix}b_{11} & b_{12} & b_{13} &b_{11} & b_{12}\\b_{21} & b_{22}& b_{23}& b_{21} & b_{22} \\ b_{31} & b_{32} & b_{33} & b_{31} & b_{32}\end{bmatrix}\)
\(\color{blue}|\textbf{B}| = b_{11}b_{22}b_{33} + b_{12}b_{23}b_{31} + b_{13}b_{21}b_{32}\:-\:b_{31}b_{22}b_{13}\:-\:b_{32}b_{23}b_{11}\:-\:b_{33}b_{21}b_{12}\)
Contoh 1
\(\textbf{C} = \begin{bmatrix}1 & 1 & 5 \\2 & 3 & 1\\4&1&3 \end{bmatrix}\)