Perkalian Skalar (Dot Product)

Diketahui vektor \(\textbf{u} = \left(\begin{array}{c}a\\ b\end{array}\right)\) dan \(\textbf{v} = \left(\begin{array}{c}c\\ d\end{array}\right)\).

Perkalian skalar antara vektor \(\textbf{u}\) dan \(\textbf{v}\) dihitung sebagai berikut:

\(\left(\begin{array}{c}a\\ b\end{array}\right)\cdot \left(\begin{array}{c}c\\ d\end{array}\right) = ac + bd\)

 

Berapakah hasil \(\textbf{u}\cdot \textbf{u}\)?

\(\textbf{u}\cdot \textbf{u} = ||\textbf{u}||^2\)

Contoh Soal

 

Soal 1

Tentukan hasil perkalian skalar antara vektor \(\textbf{u} = \left(\begin{array}{c}-3\\ 2\end{array}\right)\) dan \(\textbf{v} = \left(\begin{array}{c}-5\\ 1\end{array}\right)\)

 

Soal 2

Tentukan hasil perkalian skalar antara vektor \(\textbf{u} = \left(\begin{array}{c}-1\\ 0\\2\end{array}\right)\) dan \(\textbf{v} = \left(\begin{array}{c}3\\8\\-5\end{array}\right)\)