Sifat 1
\(a^m \times a^n = a^{m + n}\)
Contoh:
- \(3^2 \times 3^5 = 3^{2 + 5} = 3^7\)
- \(6^3 \times 6 = 6^{3 + 1} = 6^4\)
- \(7^{12} \times 7^{-2} = 7^{12 + (-2)} = 7^{10}\)
- \(\left(2^3\right)^2 = 2^{(3\times 2)} = 2^6\)
- \(\left(4^2\right)^{-1} = 4^{(2\times -1)} = 4^{-2}\)
- \(\left(5^3\right)^{6} = 5^{(3\times 6)} = 5^{18}\)
- \(\left(\dfrac{2}{3}\right)^4 = \dfrac{2^4}{3^4}\)
- \(\left(\dfrac{1}{5}\right)^3 = \dfrac{1}{5^3}\)
- \(\left(\dfrac{4}{5}\right)^{-2} = \dfrac{4^{-2}}{5^{-2}}\)
- \(\dfrac{2^5}{2^2} = 2^{5 \:-\: 2} = 2^3\)
- \(\dfrac{5^3}{5} = 5^{3 \:-\: 1} = 5^2\)
- \(\dfrac{7^{-5}}{7^3} = 7^{-5 \:-\: 3} = 7^{-8}\)
- \(\left(2 \times 3\right)^5 = 2^5 \times 3^5\)
- \(\left(4 \times (-3)\right)^2 =4^2 \times (-3)^2\)
- \(\left(5 \times 7\right)^{-2} = 5^{-2} \times 7^{-2}\)
- \(\left(\dfrac{2}{5}\right)^{-1} = \left(\dfrac{5}{2}\right)^{1}\)
- \(\left(\dfrac{4}{7}\right)^{-2} = \left(\dfrac{7}{4}\right)^{2}\)
- \(\left(\dfrac{5}{12}\right)^{-4} = \left(\dfrac{12}{5}\right)^{4}\)
Contoh Soal
Contoh 1
Sederhanakan dan nyatakan dalam bentuk pangkat positif \(\dfrac{\left(m^{\frac{1}{2}}\:n^{-2}\right)^4\:\left(m^{-\frac{12}{5}}\:n^4\right)^5}{\left(m^{\frac{5}{2}}\:n^8\right)^2}\)
\(\dfrac{(m^{\frac{1}{2}}\cdot n^{-2})^4\:(m^{-\frac{12}{5}}\cdot n^4)^5}{(m^{\frac{5}{2}}\cdot n^8)^2}\)
\(\dfrac{(m^{\frac{1}{2}(4)}\cdot n^{-2(4)})\:(m^{-\frac{12}{5}(5)}\cdot n^{4(5)})}{(m^{\frac{5}{2}(2)}\cdot n^{8(2)})}\)
\(\dfrac{m^2\cdot n^{-8}\cdot m^{-12}\cdot n^{20}}{m^5\cdot n^{16}}\)
\(\dfrac{m^{2 + (-12)}\cdot n^{-8 + 20}}{m^5\cdot n^{16}}\)
\(m^{-10-5}\cdot n^{12-16}\)
\(m^{-15}\cdot n^{-4}\)
\(\dfrac{1}{m^{15}\:n^4}\)
Contoh 2
Sederhanakan dan nyatakan dalam perpangkatan positif bentuk \(\left(\dfrac{60}{15}\right)^7 \div \left(\dfrac{162}{40}\right)^5 \times \left(\dfrac{32}{150}\right)^3\)
Buatlah faktorisasi prima untuk masing-masing angka
\(\dfrac{(2^2\cdot 3 \cdot 5)^7}{(3\cdot 5)^7}\div \dfrac{(2\cdot 3^4)^5}{(2^3\cdot 5)^5}\times \dfrac{(2^5)^3}{(2\cdot 3\cdot 5^2)^3}\)
\(\dfrac{2^{14}\cdot \cancel{3^7\cdot 5^7}}{\cancel{3^7\cdot 5^7}}\div \dfrac{2^5\cdot 3^{20}}{2^{15}\cdot 5^5}\times \dfrac{2^{15}}{2^3\cdot 3^3\cdot 5^6}\)
\(2^{14}\times \dfrac{2^{15}\cdot 5^5}{2^5\cdot 3^{20}}\times \dfrac{2^{15-3}}{3^3\cdot 5^6}\)
\(2^{14}\times 2^{15-5} \cdot 3^{-20} \cdot 5^5 \times 2^{12}\cdot 3^{-3}\cdot 5^{-6}\)
\(2^{14}\cdot 2^{10}\cdot 2^{12}\cdot 3^{-20}\cdot 3^{-3}\cdot 5^5\cdot 5^{-6}\)
\( 2^{14+10+12}\cdot 3^{-20-3}\cdot 5^{5-6}\)
\(2^{36}\cdot 3^{-23}\cdot 5^{-1}\)
\(\dfrac{2^{36}}{3^{23}\cdot 5}\)
Contoh 3
Sederhanakan dan nyatakan dalam perpangkatan positif bentuk \(\left(\dfrac{8(x\:-\: y)(xy)^{-1}}{4xy^{-2} \:-\: 4yx^{-2}}\right)^{-1}\)
\(\left(\dfrac{8(x\:-\: y)(xy)^{-1}}{4xy^{-2} – 4yx^{-2}}\right)^{-1}\)
\(\color{blue} \text{Note: }\:\left(\dfrac{a}{b}\right)^{-1} = \left(\dfrac{b}{a}\right)^{1}\)
\(\dfrac{4xy^{-2}\:-\: 4yx^{-2}}{8(x\:-\: y)(xy)^{-1}}\)
\(\dfrac{\frac{4x}{y^2}\:-\: \frac{4y}{x^2}}{\frac{8(x\:-\: y)}{xy}}\)
\(\dfrac{\frac{4x^3\:-\: 4y^3}{(xy)^2}}{\frac{8(x\:-\: y)}{xy}}\)
\(\dfrac{4(x^3\:-\: y^3)}{\cancelto{xy}{(xy)^2}}\times \dfrac{\cancel{xy}}{8(x\:-\: y)}\)
\(\color{blue} \text{Note: }\:x^3 \:-\: y^3 = (x\:-\: y)(x^2 + xy + y^2)\)
\(\dfrac{4\cancel{(x\:-\: y)}(x^2+xy+y^2)}{xy\cdot 8\cancel{(x\:-\: y)}}\)
\(\dfrac{x^2+xy+y^2}{2xy}\)
Contoh 4
Tentukan nilai dari \(\dfrac{(2^5\cdot 2^{n+1} \:-\: 2^{-2}\cdot 2^{n + 3})}{2}\times 2^{-n \:-\: 3}\)
\(\dfrac{(2^5\cdot 2^{n+1} \:-\: 2^{-2}\cdot 2^{n + 3})}{2}\times 2^{-n\:-\: 3}\)
\(\color{blue}\text{Note: }\:a^{m + n} = a^m\cdot a^n\)
\((\dfrac{2^5\cdot 2^n\cdot 2^1 \:-\: 2^{-2}\cdot 2^n\cdot 2^3}{2})\times 2^{-n}\cdot 2^{-3}\)
\((\dfrac{2^n\cdot 2^{5+1} \:-\: 2^n\cdot 2^{-2+3}}{2})\times \dfrac{1}{2^n\cdot 2^3}\)
\(\dfrac{\cancel{2^n}\cdot (2^6\:-\: 2)}{\cancel{2^n}\cdot 2^{1+3}}\)
\(\dfrac{64\:-\: 2}{16}\)
\(\dfrac{62}{16}\)
\(\dfrac{31}{8}\)
Contoh 5
Tentukan nilai dari \(\dfrac{2^{m+2}\cdot 14^{m\:-\: 1}\cdot 7^{m+1}}{196^m}\)
\(\dfrac{2^{m+2}\cdot 14^{m\:-\: 1}\cdot 7^{m+1}}{196^m}\)
\(\dfrac{2^m\cdot 2^2\cdot 14^m\cdot 14^{-1}\cdot 7^m\cdot 7^1}{14^{2m}}\)
\(\dfrac{2^m\cdot 7^m\cdot 14^m\cdot 2^2\cdot \frac{1}{14}\cdot 7}{14^{2m}}\)
\(\dfrac{(2\cdot 7)^m\cdot 14^m\cdot 2}{14^{2m}}\)
\(\dfrac{14^m\cdot 14^m\cdot 2}{14^{2m}}\)
\(\dfrac{\cancel{14^{2m}}\cdot 2}{\cancel{14^{2m}}}\)
\(2\)