Sifat-Sifat Eksponen

Sifat 1   \(a^m \times a^n = a^{m + n}\) Contoh:
  • \(3^2 \times 3^5 = 3^{2 + 5} = 3^7\)
  • \(6^3 \times 6 = 6^{3 + 1} = 6^4\)
  • \(7^{12} \times 7^{-2} = 7^{12 + (-2)} = 7^{10}\)
Sifat 2   \(\left(a^m\right)^n = a^{m\times n}\) Contoh:
  • \(\left(2^3\right)^2 = 2^{(3\times 2)} = 2^6\)
  • \(\left(4^2\right)^{-1} = 4^{(2\times -1)} = 4^{-2}\)
  • \(\left(5^3\right)^{6} = 5^{(3\times 6)} = 5^{18}\)
Sifat 3   \(\left(\dfrac{a}{b}\right)^m = \dfrac{a^m}{b^m}\) Contoh:
  • \(\left(\dfrac{2}{3}\right)^4 = \dfrac{2^4}{3^4}\)
  • \(\left(\dfrac{1}{5}\right)^3 = \dfrac{1}{5^3}\)
  • \(\left(\dfrac{4}{5}\right)^{-2} = \dfrac{4^{-2}}{5^{-2}}\)
Sifat 4   \(\dfrac{a^m}{a^n} = a^{m – n}\) Contoh:
  • \(\dfrac{2^5}{2^2} = 2^{5 \:-\: 2} = 2^3\)
  • \(\dfrac{5^3}{5} = 5^{3 \:-\: 1} = 5^2\)
  • \(\dfrac{7^{-5}}{7^3} = 7^{-5 \:-\: 3} = 7^{-8}\)
Sifat 5   \(\left(a \times b\right)^m = a^m \times b^m\) Contoh:
  • \(\left(2 \times 3\right)^5 = 2^5 \times 3^5\)
  • \(\left(4 \times (-3)\right)^2 =4^2 \times (-3)^2\)
  • \(\left(5 \times 7\right)^{-2} = 5^{-2} \times 7^{-2}\)
Sifat 6   \(\left(\dfrac{a}{b}\right)^{-n} = \left(\dfrac{b}{a}\right)^n\) Contoh:
  • \(\left(\dfrac{2}{5}\right)^{-1} = \left(\dfrac{5}{2}\right)^{1}\)
  • \(\left(\dfrac{4}{7}\right)^{-2} = \left(\dfrac{7}{4}\right)^{2}\)
  • \(\left(\dfrac{5}{12}\right)^{-4} = \left(\dfrac{12}{5}\right)^{4}\)

Contoh Soal

 
Contoh 1
Sederhanakan dan nyatakan dalam bentuk pangkat positif \(\dfrac{\left(m^{\frac{1}{2}}\:n^{-2}\right)^4\:\left(m^{-\frac{12}{5}}\:n^4\right)^5}{\left(m^{\frac{5}{2}}\:n^8\right)^2}\)  
Contoh 2
Sederhanakan dan nyatakan dalam perpangkatan positif bentuk \(\left(\dfrac{60}{15}\right)^7 \div \left(\dfrac{162}{40}\right)^5 \times \left(\dfrac{32}{150}\right)^3\)  
Contoh 3
Sederhanakan dan nyatakan dalam perpangkatan positif bentuk \(\left(\dfrac{8(x\:-\: y)(xy)^{-1}}{4xy^{-2} \:-\: 4yx^{-2}}\right)^{-1}\)  
Contoh 4
Tentukan nilai dari \(\dfrac{(2^5\cdot 2^{n+1} \:-\: 2^{-2}\cdot 2^{n + 3})}{2}\times 2^{-n \:-\: 3}\)  
Contoh 5
Tentukan nilai dari \(\dfrac{2^{m+2}\cdot 14^{m\:-\: 1}\cdot 7^{m+1}}{196^m}\)  

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *