Perkalian dan Pembagian Pecahan

Perkalian Pecahan

Cara perkalian pecahan, pembilang dikali pembilang, penyebut dikali penyebut.

Contoh:

  • \(\dfrac{2}{3}\times \dfrac{3}{4} = \dfrac{2\times 3}{3\times 4} = \dfrac{6}{12} = \dfrac{1}{2}\)

 

  • \(\dfrac{4}{7}\times \dfrac{2}{5} = \dfrac{4\times 2}{7\times 5} = \dfrac{8}{35}\)

 

  • \(\dfrac{5}{9}\times \dfrac{1}{8} = \dfrac{5\times 1}{9\times 8} = \dfrac{5}{72}\)

 

Latihan Soal

Hitunglah!

(1)   \(\dfrac{1}{2} \times \dfrac{1}{3}\)

 

(2)   \(\dfrac{2}{5} \times \dfrac{3}{8}\)

 

(3)   \(\dfrac{5}{6} \times \dfrac{2}{3}\)

 

(4)   \(\dfrac{7}{11} \times \dfrac{1}{2}\)

 

(5)   \(\dfrac{3}{4} \times \dfrac{9}{10}\)

 

(6)   \(\dfrac{5}{12} \times \dfrac{7}{9}\)

 

(7)   \(\dfrac{7}{10} \times \dfrac{6}{19}\)

 

(8)   \(\dfrac{12}{13} \times \dfrac{10}{21}\)

 

Pembagian Pecahan

Bentuk pembagian pecahan,

\(\dfrac{a}{b} \div \dfrac{c}{d}, \text{ dengan } b,d \neq 0\)

dapat kita ubah menjadi bentuk perkalian pecahan:

\(\bbox[yellow, 5pt]{\dfrac{a}{b} \div \dfrac{c}{d} = \dfrac{a}{b} \times \dfrac{d}{c} = \dfrac{a\times d}{b\times c}}\)

Contoh:

  • \(\dfrac{3}{11}\div \dfrac{2}{5} = \dfrac{3}{11}\times \dfrac{5}{2} = \dfrac{3\times 5}{11\times 2} = \dfrac{15}{22}\)

 

  • \(\dfrac{4}{5}\div \dfrac{3}{10} = \dfrac{4}{\cancel{5}}\times \dfrac{\cancelto{2}{10}}{3} = \dfrac{8}{3}\)

 

  • \(\dfrac{5}{7}\div \dfrac{1}{35} = \dfrac{5}{\cancel{7}}\times \dfrac{\cancelto{5}{35}}{1} = 25\)

 

Latihan Soal

Hitunglah!

(1)   \(\dfrac{4}{5} \div \dfrac{1}{10}\)

 

(2)   \(\dfrac{1}{5} \div \dfrac{3}{4}\)

 

(3)   \(\dfrac{3}{7} \div \dfrac{5}{42}\)

 

(4)   \(\dfrac{5}{6} \div \dfrac{3}{7}\)

 

(5)   \(\dfrac{6}{13} \div \dfrac{2}{39}\)

 

(6)   \(\dfrac{3}{20} \div \dfrac{7}{40}\)

 

(7)   \(\dfrac{11}{12} \div \dfrac{22}{36}\)

 

(8)   \(\dfrac{20}{31} \div \dfrac{80}{93}\)