Quiz-summary
0 of 30 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
Information
Dear Students,
Welcome to today’s quiz! This is your opportunity to demonstrate what you’ve learned so far, so do your best. Please keep in mind that you have a maximum of 30 minutes to complete all the questions. Make sure to manage your time wisely and answer each question thoughtfully.
Good luck!
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Results
0 of 30 questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 points, (0)
Categories
- Not categorized 0%
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- Answered
- Review
-
Question 1 of 30
1. Question
1 points\(1\frac{4}{5}\pi\) radian = … °
Correct
\(1\frac{4}{5}\pi\) radian = \(\frac{9}{5}\pi \times \color{red} \frac{180^{\circ}}{\pi} \color{black} = 324^{\circ}\)
Incorrect
\(1\frac{4}{5}\pi\) radian = \(\frac{9}{5}\pi \times \color{red} \frac{180^{\circ}}{\pi} \color{black} = 324^{\circ}\)
-
Question 2 of 30
2. Question
1 points\(216^{\circ} = \dotso \text{ radian}\)
Correct
\(216^{\circ} = 216^{\circ} \times \color{red} \frac{\pi}{180^{\circ}}\color{black} = 1\frac{1}{5}\pi\text{ rad }\)
Incorrect
\(216^{\circ} = 216^{\circ} \times \color{red} \frac{\pi}{180^{\circ}}\color{black} = 1\frac{1}{5}\pi\text{ rad }\)
-
Question 3 of 30
3. Question
1 pointsPerhatikan segitiga siku-siku berikut:
Nilai \(\cos \alpha \times \cot \alpha = \dotso\)
Correct
Mencari panjang sisi samping:
\(x^2 + (\sqrt{2})^2 = 5^2\)
\(x^2 + 2 = 25\)
\(x^2 = 25\:-\:2\)
\(x^2 = 23\)
\(x = \sqrt{23}\)
\(\cos \alpha \times \cot \alpha\)
\(\frac{\text{samping}}{\text{miring}}\times \frac{\text{samping}}{\text{depan}}\)
\(\frac{\sqrt{23}}{5}\times \frac{\sqrt{23}}{\sqrt{2}}\)
\(\frac{23}{5\sqrt{2}}\times \color{red}\frac{\sqrt{2}}{\sqrt{2}}\)
\(\frac{23}{10}\sqrt{2}\)
Incorrect
Mencari panjang sisi samping:
\(x^2 + (\sqrt{2})^2 = 5^2\)
\(x^2 + 2 = 25\)
\(x^2 = 25\:-\:2\)
\(x^2 = 23\)
\(x = \sqrt{23}\)
\(\cos \alpha \times \cot \alpha\)
\(\frac{\text{samping}}{\text{miring}}\times \frac{\text{samping}}{\text{depan}}\)
\(\frac{\sqrt{23}}{5}\times \frac{\sqrt{23}}{\sqrt{2}}\)
\(\frac{23}{5\sqrt{2}}\times \color{red}\frac{\sqrt{2}}{\sqrt{2}}\)
\(\frac{23}{10}\sqrt{2}\)
-
Question 4 of 30
4. Question
1 pointsHasil dari \(\dfrac{\sin 60^{\circ}\cdot \cos 45^{\circ}\:-\:\cos 60^{\circ}\cdot \sin 45^{\circ}}{\tan 60^{\circ}} = \dotso\)
Correct
\(\dfrac{\frac{1}{2}\sqrt{3}\cdot \frac{1}{2}\sqrt{2}\:-\:\frac{1}{2}\cdot \frac{1}{2}\sqrt{2}}{\sqrt{3}} \)
\(\dfrac{\frac{1}{4}\sqrt{6}\:-\:\frac{1}{4}\sqrt{2}}{\sqrt{3}}\times \color{red}\dfrac{\sqrt{3}}{\sqrt{3}}\)
\(\dfrac{\frac{1}{4}\sqrt{18}\:-\:\frac{1}{4}\sqrt{6}}{3}\)
\(\frac{1}{12}\sqrt{18}\:-\:\frac{1}{12}\sqrt{6}\)
\(\frac{3}{12}\sqrt{2}\:-\:\frac{1}{12}\sqrt{6}\)
\(\frac{1}{4}\sqrt{2}\:-\:\frac{1}{12}\sqrt{6}\)
Incorrect
\(\dfrac{\frac{1}{2}\sqrt{3}\cdot \frac{1}{2}\sqrt{2}\:-\:\frac{1}{2}\cdot \frac{1}{2}\sqrt{2}}{\sqrt{3}} \)
\(\dfrac{\frac{1}{4}\sqrt{6}\:-\:\frac{1}{4}\sqrt{2}}{\sqrt{3}}\times \color{red}\dfrac{\sqrt{3}}{\sqrt{3}}\)
\(\dfrac{\frac{1}{4}\sqrt{18}\:-\:\frac{1}{4}\sqrt{6}}{3}\)
\(\frac{1}{12}\sqrt{18}\:-\:\frac{1}{12}\sqrt{6}\)
\(\frac{3}{12}\sqrt{2}\:-\:\frac{1}{12}\sqrt{6}\)
\(\frac{1}{4}\sqrt{2}\:-\:\frac{1}{12}\sqrt{6}\)
-
Question 5 of 30
5. Question
1 pointsHasil dari \(\csc 30^{\circ}\cdot \sec 45^{\circ} + \cos 90^{\circ}\cdot \tan 19^{\circ} = \dotso\)
Correct
\(\csc 30^{\circ}\cdot \sec 45^{\circ} + \cos 90^{\circ}\cdot \tan 19^{\circ}\)
\(2\cdot \sqrt{2} + 0\)
\(2\sqrt{2}\)
Incorrect
\(\csc 30^{\circ}\cdot \sec 45^{\circ} + \cos 90^{\circ}\cdot \tan 19^{\circ}\)
\(2\cdot \sqrt{2} + 0\)
\(2\sqrt{2}\)
-
Question 6 of 30
6. Question
1 points\(1\frac{1}{2}\pi \text{ radian} = \dotso ^{\circ}\)
Correct
\(1\frac{1}{2}\pi \text{ radian} = \frac{3}{2}\pi \times \frac{180^{\circ}}{\pi}\)
\(1\frac{1}{2}\pi \text{ radian} = 270^{\circ}\)
Incorrect
\(1\frac{1}{2}\pi \text{ radian} = \frac{3}{2}\pi \times \frac{180^{\circ}}{\pi}\)
\(1\frac{1}{2}\pi \text{ radian} = 270^{\circ}\)
-
Question 7 of 30
7. Question
1 points\(1\text{ radian} = \dotso ^{\circ}\)
Correct
\(1\text{ radian} = \frac{180 ^{\circ}}{\pi}\)
\(1\text{ radian} = \frac{180 ^{\circ}}{\frac{22}{7}} = 57,27^{\circ}\)
Incorrect
\(1\text{ radian} = \frac{180 ^{\circ}}{\pi}\)
\(1\text{ radian} = \frac{180 ^{\circ}}{\frac{22}{7}} = 57,27^{\circ}\)
-
Question 8 of 30
8. Question
1 points\(1^{\circ} = \dotso \text{ radian}\)
Correct
\(1^{\circ} = \frac{\pi}{180^{\circ}} \text{ radian}\)
Incorrect
\(1^{\circ} = \frac{\pi}{180^{\circ}} \text{ radian}\)
-
Question 9 of 30
9. Question
1 points\(150^{\circ} = \dotso \text{ radian}\)
Correct
\(150^{\circ} = 150^{\circ}\times \frac{\pi}{180^{\circ}} \text{ radian}\)
\(150^{\circ} = \frac{5}{6}\pi\text{ radian}\)
Incorrect
\(150^{\circ} = 150^{\circ}\times \frac{\pi}{180^{\circ}} \text{ radian}\)
\(150^{\circ} = \frac{5}{6}\pi\text{ radian}\)
-
Question 10 of 30
10. Question
1 pointsPerhatikan segitiga siku-siku berikut:
Nilai \(\sin \alpha + \csc \alpha = \dotso\)
Correct
Menentukan panjang sisi depan,
\(x^2 + (\sqrt{15})^2 = 4^2\)
\(x^2 + 15 = 16\)
\(x^2 = 1\)
\(x = 1\)
\(\sin \alpha + \csc \alpha\)
\(\frac{1}{4} + \frac{4}{1} = 4\frac{1}{4}\)
Incorrect
Menentukan panjang sisi depan,
\(x^2 + (\sqrt{15})^2 = 4^2\)
\(x^2 + 15 = 16\)
\(x^2 = 1\)
\(x = 1\)
\(\sin \alpha + \csc \alpha\)
\(\frac{1}{4} + \frac{4}{1} = 4\frac{1}{4}\)
-
Question 11 of 30
11. Question
1 pointsPerhatikan segitiga siku-siku berikut:
Jika \(\csc \alpha = \dfrac{\sqrt{3}}{5}\), maka nilai \(x\) adalah …
Correct
\(\csc \alpha = \dfrac{\sqrt{3}}{5}\)
\(\sin\alpha = \dfrac{5}{\sqrt{3}}\)
\(\dfrac{x}{10\sqrt{3}} = \dfrac{5}{\sqrt{3}}\)
\(x = \dfrac{5}{\cancel{\sqrt{3}}}\times 10\cancel{\sqrt{3}}\)
\(x = 50\)
Incorrect
\(\csc \alpha = \dfrac{\sqrt{3}}{5}\)
\(\sin\alpha = \dfrac{5}{\sqrt{3}}\)
\(\dfrac{x}{10\sqrt{3}} = \dfrac{5}{\sqrt{3}}\)
\(x = \dfrac{5}{\cancel{\sqrt{3}}}\times 10\cancel{\sqrt{3}}\)
\(x = 50\)
-
Question 12 of 30
12. Question
1 pointsPerhatikan segitiga siku-siku berikut!
Jika \(\alpha = 30^{\circ}\), maka nilai \(x = \dotso\)
Correct
Perhatikan segitiga siku-siku yang besar,
\(\sin 30^{\circ} = \dfrac{y}{48}\)
\(\dfrac{1}{2} = \dfrac{y}{48}\)
\(y = 24\)
Lihat segitiga kecil dan tentukan nilai \(x\) menggunakan rumus pythagoras,
\(x^2 + 24^2 = 25^2\)
\(x^2 + 576 = 625\)
\(x^2 = 49\)
\(x = 7\)
Incorrect
Perhatikan segitiga siku-siku yang besar,
\(\sin 30^{\circ} = \dfrac{y}{48}\)
\(\dfrac{1}{2} = \dfrac{y}{48}\)
\(y = 24\)
Lihat segitiga kecil dan tentukan nilai \(x\) menggunakan rumus pythagoras,
\(x^2 + 24^2 = 25^2\)
\(x^2 + 576 = 625\)
\(x^2 = 49\)
\(x = 7\)
-
Question 13 of 30
13. Question
1 pointsPerhatikan gabungan segitiga siku-siku berikut!
Jika panjang AB = \(5\sqrt{3}\) cm, maka panjang EC = … cm
Correct
Lihat ΔDAB,
\(\cos 30^{\circ} = \dfrac{\text{AB}}{\text{BD}}\)
\(\dfrac{\sqrt{3}{2}} = \dfrac{5\sqrt{3}}{\text{BD}}\)
\(\dfrac{\cancel{\sqrt{3}}}{2} = \dfrac{5\cancel{\sqrt{3}}}{\text{BD}}\)
\(\text{BD} = 10\)
Lihat ΔBDE,
\(\cos 30^{\circ} = \dfrac{\text{BD}}{\text{BE}}\)
\(\dfrac{\sqrt{3}}{2} = \dfrac{10}{\text{BE}}\)
\(\sqrt{3}\text{BE} = 20\)
\(\text{BE} = \dfrac{20}{\sqrt{3}}\)
Lihat ΔBCE,
\(\sin 30^{\circ} = \dfrac{\text{EC}}{\text{BE}}\)
\(\dfrac{1}{2} = \dfrac{\text{EC}}{\dfrac{20}{\sqrt{3}}}\)
\(\text{EC} = \dfrac{10}{\sqrt{3}}\)
\(\text{EC} = \dfrac{10}{3}\sqrt{3}\)
Incorrect
Lihat ΔDAB,
\(\cos 30^{\circ} = \dfrac{\text{AB}}{\text{BD}}\)
\(\dfrac{\sqrt{3}{2}} = \dfrac{5\sqrt{3}}{\text{BD}}\)
\(\dfrac{\cancel{\sqrt{3}}}{2} = \dfrac{5\cancel{\sqrt{3}}}{\text{BD}}\)
\(\text{BD} = 10\)
Lihat ΔBDE,
\(\cos 30^{\circ} = \dfrac{\text{BD}}{\text{BE}}\)
\(\dfrac{\sqrt{3}}{2} = \dfrac{10}{\text{BE}}\)
\(\sqrt{3}\text{BE} = 20\)
\(\text{BE} = \dfrac{20}{\sqrt{3}}\)
Lihat ΔBCE,
\(\sin 30^{\circ} = \dfrac{\text{EC}}{\text{BE}}\)
\(\dfrac{1}{2} = \dfrac{\text{EC}}{\dfrac{20}{\sqrt{3}}}\)
\(\text{EC} = \dfrac{10}{\sqrt{3}}\)
\(\text{EC} = \dfrac{10}{3}\sqrt{3}\)
-
Question 14 of 30
14. Question
1 pointsHasil dari \(\dfrac{\sin 30^{\circ}\cdot \cos 60^{\circ} + \cos 30^{\circ}\cdot \sin 60^{\circ}}{\tan 45^{\circ}} = \dotso\)
Correct
\(\dfrac{\frac{1}{2}\cdot \frac{1}{2} + \frac{1}{2}\sqrt{3}\cdot \frac{1}{2}\sqrt{3}}{1}\)
\(\frac{1}{4} + \frac{3}{4} = 1\)
Incorrect
\(\dfrac{\frac{1}{2}\cdot \frac{1}{2} + \frac{1}{2}\sqrt{3}\cdot \frac{1}{2}\sqrt{3}}{1}\)
\(\frac{1}{4} + \frac{3}{4} = 1\)
-
Question 15 of 30
15. Question
1 pointsHasil dari \(\dfrac{\csc 30^{\circ}\cdot \sec 60^{\circ} + \cot 30^{\circ}}{\sin 90^{\circ} + \cos 0^{\circ}} = \dotso\)
Correct
\(\dfrac{2\cdot 2 + \sqrt{3}}{1 + 1}\)
\(\dfrac{4 + \sqrt{3}}{2}\)
\(2 + \dfrac{1}{2}\sqrt{3}\)
Incorrect
\(\dfrac{2\cdot 2 + \sqrt{3}}{1 + 1}\)
\(\dfrac{4 + \sqrt{3}}{2}\)
\(2 + \dfrac{1}{2}\sqrt{3}\)
-
Question 16 of 30
16. Question
1 pointsHasil dari \(\dfrac{\tan \frac{1}{4}\pi + \cos \frac{1}{2}\pi \cdot \sin \frac{1}{3}\pi}{\csc \frac{1}{4}\pi} = \dotso\)
Correct
\(\dfrac{\tan 45^{\circ} + \cos 90^{\circ} \cdot \sin 60^{\circ}}{\csc 45^{\circ}}\)
\(\dfrac{1 + 0\cdot \frac{1}{2}\sqrt{3}}{\sqrt{2}}\)
\(\dfrac{1}{\sqrt{2}}\times \color{red} \dfrac{\sqrt{2}}{\sqrt{2}}\)
\(\dfrac{1}{2}\sqrt{2}\)
Incorrect
\(\dfrac{\tan 45^{\circ} + \cos 90^{\circ} \cdot \sin 60^{\circ}}{\csc 45^{\circ}}\)
\(\dfrac{1 + 0\cdot \frac{1}{2}\sqrt{3}}{\sqrt{2}}\)
\(\dfrac{1}{\sqrt{2}}\times \color{red} \dfrac{\sqrt{2}}{\sqrt{2}}\)
\(\dfrac{1}{2}\sqrt{2}\)
-
Question 17 of 30
17. Question
1 pointsHasil dari \(\sin^2 30^{\circ} + \cos^2 30^{\circ}\) adalah …
Correct
\((\frac{1}{2})^2 + (\frac{1}{2}\sqrt{3})^2\)
\(\frac{1}{4} + \frac{3}{4} = 1\)
Incorrect
\((\frac{1}{2})^2 + (\frac{1}{2}\sqrt{3})^2\)
\(\frac{1}{4} + \frac{3}{4} = 1\)
-
Question 18 of 30
18. Question
1 pointsKoordinat polar dari titik \((2, 2\sqrt{3})\) adalah …
Correct
Koordinat polar = \((r, \theta)\)
\(r = \sqrt{x^2 + y^2}\)
\(r = \sqrt{2^2 + (2\sqrt{3})^2}\)
\(r = \sqrt{4 + 12}\)
\(r = \sqrt{16} = 4\)
\(\tan \theta = \frac{y}{x}\)
\(\tan \theta = \frac{2\sqrt{3}}{2} = \sqrt{3}\)
\(\theta = 60^{\circ}\)
Titik \((2, 2\sqrt{3})\) berada di kuadran I
Jadi kordinat polarnya adalah \((4, 60^{\circ})\)
Incorrect
Koordinat polar = \((r, \theta)\)
\(r = \sqrt{x^2 + y^2}\)
\(r = \sqrt{2^2 + (2\sqrt{3})^2}\)
\(r = \sqrt{4 + 12}\)
\(r = \sqrt{16} = 4\)
\(\tan \theta = \frac{y}{x}\)
\(\tan \theta = \frac{2\sqrt{3}}{2} = \sqrt{3}\)
\(\theta = 60^{\circ}\)
Titik \((2, 2\sqrt{3})\) berada di kuadran I
Jadi kordinat polarnya adalah \((4, 60^{\circ})\)
-
Question 19 of 30
19. Question
1 pointsKoordinat kartesius dari titik \((2\sqrt{3}, 60^{\circ})\) adalah …
Correct
\(x = r\cdot \cos \theta\)
\(x = 2\sqrt{3}\cdot \cos 60^{\circ}\)
\(x = 2\sqrt{3}\cdot \frac{1}{2} = \sqrt{3}\)
\(y = r\cdot \sin \theta\)
\(x = 2\sqrt{3}\cdot \sin 60^{\circ}\)
\(x = 2\sqrt{3}\cdot \frac{1}{2}\sqrt{3} = 3\)
Jadi koordinat kartesiusnya adalah \((\sqrt{3}, 3)\)
Incorrect
\(x = r\cdot \cos \theta\)
\(x = 2\sqrt{3}\cdot \cos 60^{\circ}\)
\(x = 2\sqrt{3}\cdot \frac{1}{2} = \sqrt{3}\)
\(y = r\cdot \sin \theta\)
\(x = 2\sqrt{3}\cdot \sin 60^{\circ}\)
\(x = 2\sqrt{3}\cdot \frac{1}{2}\sqrt{3} = 3\)
Jadi koordinat kartesiusnya adalah \((\sqrt{3}, 3)\)
-
Question 20 of 30
20. Question
1 pointsDiketahui koordinat polar dari titik \((x, 5)\) adalah \((r, 30^{\circ})\). Nilai \(x\) yang mungkin adalah …
Correct
\(y = r\cdot \sin \theta\)
\(5 = r\cdot \sin 30^{\circ}\)
\(5 = r\cdot \frac{1}{2}\)
\(r = 10\)
\(x = r\cdot \cos \theta\)
\(x = 10\cdot \cos 30^{\circ}\)
\(x = 10\cdot \frac{1}{2}\sqrt{3}\)
\(x = 5\sqrt{3}\)
Incorrect
\(y = r\cdot \sin \theta\)
\(5 = r\cdot \sin 30^{\circ}\)
\(5 = r\cdot \frac{1}{2}\)
\(r = 10\)
\(x = r\cdot \cos \theta\)
\(x = 10\cdot \cos 30^{\circ}\)
\(x = 10\cdot \frac{1}{2}\sqrt{3}\)
\(x = 5\sqrt{3}\)
-
Question 21 of 30
21. Question
1 pointsTitik P\((6, y)\) terletak di kuadran I, sudut yang dibentuk oleh sumbu x positif, titik asal (0, 0), dan titik P adalah \(\alpha\). Jika \(\sin \alpha = \frac{6}{10}\), maka nilai \(y\) adalah …
Correct
Menentukan sisi miring segitiga,
Panjang sisi miring = \(\sqrt{6^2 + y^2}\)
Panjang sisi miring = \(\sqrt{36 + y^2}\)
\(\sin \alpha = \dfrac{6}{10}\)
\(\dfrac{y}{\sqrt{36 + y^2}} = \dfrac{3}{5}\)
Kuadratkan kedua ruas,
\(\dfrac{y^2}{36 + y^2} = \dfrac{9}{25}\)
\(25y^2 = 9(36 + y^2)\)
\(25y^2 = 324 + 9y^2\)
\(25y^2\:-\:9y^2 = 324\)
\(16y^2 = 324\)
\(y^2 = \dfrac{324}{16}\)
\(y = \sqrt{\dfrac{324}{16}}\)
\(y = \dfrac{18}{4} = 4,5\)
Incorrect
Menentukan sisi miring segitiga,
Panjang sisi miring = \(\sqrt{6^2 + y^2}\)
Panjang sisi miring = \(\sqrt{36 + y^2}\)
\(\sin \alpha = \dfrac{6}{10}\)
\(\dfrac{y}{\sqrt{36 + y^2}} = \dfrac{3}{5}\)
Kuadratkan kedua ruas,
\(\dfrac{y^2}{36 + y^2} = \dfrac{9}{25}\)
\(25y^2 = 9(36 + y^2)\)
\(25y^2 = 324 + 9y^2\)
\(25y^2\:-\:9y^2 = 324\)
\(16y^2 = 324\)
\(y^2 = \dfrac{324}{16}\)
\(y = \sqrt{\dfrac{324}{16}}\)
\(y = \dfrac{18}{4} = 4,5\)
-
Question 22 of 30
22. Question
1 pointsTono mengamati puncak gedung dengan sudut elevasi \(30^{\circ}\). Jika Tono bergerak maju mendekati gedung sejauh 10 m, maka Tono akan melihat puncak gedung dengan sudut elevasi \(45^{\circ}\). Jika dianggap tinggi mata Tono 150 cm, maka tinggi gedung tersebut diukur dari permukaan tanah adalah …
Correct
\(\tan 30^{\circ} = \dfrac{y}{10 + y}\)
\(\dfrac{1}{\sqrt{3}}= \dfrac{y}{10 + y}\)
\(10 + y = \sqrt{3}y\)
\(10 = \sqrt{3}y\:-\:y\)
\(10 = y(\sqrt{3}\:-\:1)\)
\(y = \dfrac{10}{\sqrt{3}\:-\:1}\times \color{red} \dfrac{\sqrt{3} + 1}{\sqrt{3} + 1}\)
\(y = \dfrac{10\sqrt{3} + 10}{3\:-\:1}\)
\(y = \dfrac{10\sqrt{3} + 10}{2}\)
\(y = 5\sqrt{3} + 5 \text{ m}\)
Ketinggian gedung = \(y\) + tinggi mata Tono
Ketinggian gedung = \(5\sqrt{3} + 5 + 1,5 \text{ m}\)
Ketinggian gedung = \(6,5 + 5\sqrt{3}\text{ m}\)
Incorrect
\(\tan 30^{\circ} = \dfrac{y}{10 + y}\)
\(\dfrac{1}{\sqrt{3}}= \dfrac{y}{10 + y}\)
\(10 + y = \sqrt{3}y\)
\(10 = \sqrt{3}y\:-\:y\)
\(10 = y(\sqrt{3}\:-\:1)\)
\(y = \dfrac{10}{\sqrt{3}\:-\:1}\times \color{red} \dfrac{\sqrt{3} + 1}{\sqrt{3} + 1}\)
\(y = \dfrac{10\sqrt{3} + 10}{3\:-\:1}\)
\(y = \dfrac{10\sqrt{3} + 10}{2}\)
\(y = 5\sqrt{3} + 5 \text{ m}\)
Ketinggian gedung = \(y\) + tinggi mata Tono
Ketinggian gedung = \(5\sqrt{3} + 5 + 1,5 \text{ m}\)
Ketinggian gedung = \(6,5 + 5\sqrt{3}\text{ m}\)
-
Question 23 of 30
23. Question
1 pointsPernyataan di bawah ini yang salah adalah …
Correct
Incorrect
-
Question 24 of 30
24. Question
1 pointsPernyataan di bawah ini yang benar adalah …
Correct
Incorrect
-
Question 25 of 30
25. Question
1 pointsDiketahui \(\sin \alpha = 0,8\) dan \(\cos \beta = \frac{1}{3}\), dengan \(\alpha\) dan \(\beta\) sudut lancip. Nilai \(\tan \alpha \times \csc \beta\) adalah …
Correct
\(\sin \alpha = 0,8 = \frac{8}{10}\)
\(\tan \alpha = \frac{8}{6} = \frac{4}{3}\)
\(\cos \beta = \frac{1}{3}\)
\(\csc \beta = \frac{3}{2\sqrt{2}} = \frac{3\sqrt{2}}{4}\)
\(\tan \alpha \times \csc \beta\)
\(\frac{4}{3} \times \frac{3\sqrt{2}}{4}\)
\(\sqrt{2}\)
Incorrect
\(\sin \alpha = 0,8 = \frac{8}{10}\)
\(\tan \alpha = \frac{8}{6} = \frac{4}{3}\)
\(\cos \beta = \frac{1}{3}\)
\(\csc \beta = \frac{3}{2\sqrt{2}} = \frac{3\sqrt{2}}{4}\)
\(\tan \alpha \times \csc \beta\)
\(\frac{4}{3} \times \frac{3\sqrt{2}}{4}\)
\(\sqrt{2}\)
-
Question 26 of 30
26. Question
1 points\(\dfrac{1 + \cos 30^{\circ} + \cos 60^{\circ}}{\sin 60^{\circ} + \sin 30^{\circ}} = \dotso\)
Correct
\(\dfrac{1 + \frac{1}{2}\sqrt{3} + \frac{1}{2}}{\frac{1}{2}\sqrt{3} + \frac{1}{2}}\)
\(\dfrac{\frac{\sqrt{3} + 3}{2}}{\frac{\sqrt{3} + 1}{2}}\)
\(\dfrac{\sqrt{3} + 3}{\sqrt{3} + 1}\times \color{red} \dfrac{\sqrt{3} \:-\:1}{\sqrt{3} \:-\:1}\)
\(\dfrac{3\:-\:\sqrt{3} + 3\sqrt{3} \:-\:1}{3\:-\:1}\)
\(\dfrac{2\sqrt{3}}{2}\)
\(\sqrt{3} = \cot 30^{\circ}\)
Incorrect
\(\dfrac{1 + \frac{1}{2}\sqrt{3} + \frac{1}{2}}{\frac{1}{2}\sqrt{3} + \frac{1}{2}}\)
\(\dfrac{\frac{\sqrt{3} + 3}{2}}{\frac{\sqrt{3} + 1}{2}}\)
\(\dfrac{\sqrt{3} + 3}{\sqrt{3} + 1}\times \color{red} \dfrac{\sqrt{3} \:-\:1}{\sqrt{3} \:-\:1}\)
\(\dfrac{3\:-\:\sqrt{3} + 3\sqrt{3} \:-\:1}{3\:-\:1}\)
\(\dfrac{2\sqrt{3}}{2}\)
\(\sqrt{3} = \cot 30^{\circ}\)
-
Question 27 of 30
27. Question
1 pointsJika \(4\sin x \:-\:2\sqrt{2} = 0\), dengan \(x\) adalah sudut lancip, maka nilai \(\tan x = \dotso\)
Correct
\(4\sin x \:-\:2\sqrt{2} = 0\)
\(4\sin x = 2\sqrt{2}\)
\(\sin x = \frac{1}{2}\sqrt{2}\)
\(x = 45^{\circ}\)
Jadi,
\(\tan 45^{\circ} = 1\)
Incorrect
\(4\sin x \:-\:2\sqrt{2} = 0\)
\(4\sin x = 2\sqrt{2}\)
\(\sin x = \frac{1}{2}\sqrt{2}\)
\(x = 45^{\circ}\)
Jadi,
\(\tan 45^{\circ} = 1\)
-
Question 28 of 30
28. Question
1 pointsPerhatikan gambar berikut:
Nilai \(\sin \alpha = \dotso\)
Correct
Panjang sisi miring = \(\sqrt{15^2 + 8^2}\)
Panjang sisi miring = \(\sqrt{225 + 64}\)
Panjang sisi miring = \(\sqrt{289} = 17\)
\(\sin \alpha = \dfrac{\text{depan}}{\text{miring}}\)
\(\sin \alpha = -\dfrac{8}{17}\)
Di kuadran IV nilai \(\sin \alpha\) negatif
Incorrect
Panjang sisi miring = \(\sqrt{15^2 + 8^2}\)
Panjang sisi miring = \(\sqrt{225 + 64}\)
Panjang sisi miring = \(\sqrt{289} = 17\)
\(\sin \alpha = \dfrac{\text{depan}}{\text{miring}}\)
\(\sin \alpha = -\dfrac{8}{17}\)
Di kuadran IV nilai \(\sin \alpha\) negatif
-
Question 29 of 30
29. Question
1 pointsPerhatikan gambar berikut:
Nilai \(\cot \beta = \dotso\)
Correct
\(\cot \beta = \dfrac{\text{samping}}{\text{depan}}\)
\(\cot \beta = \dfrac{24}{7}\)
Di kuadran III nilai \(\cot \beta\) positif
Incorrect
\(\cot \beta = \dfrac{\text{samping}}{\text{depan}}\)
\(\cot \beta = \dfrac{24}{7}\)
Di kuadran III nilai \(\cot \beta\) positif
-
Question 30 of 30
30. Question
1 pointsPerhatikan gambar berikut:
Nilai \(\cos \gamma = \dotso\)
Correct
Panjang sisi miring = \(\sqrt{6^2 + 8^2}\)
Panjang sisi miring = \(\sqrt{36 + 64}\)
Panjang sisi miring = \(\sqrt{100} = 10\)
\(\cos \gamma = \dfrac{\text{samping}}{\text{miring}}\)
\(\cos \gamma = -\dfrac{8}{10}\)
\(\cos \gamma = -0,8\)
Di kuadran II \(\cos \gamma\) bernilai negatif
Incorrect
Panjang sisi miring = \(\sqrt{6^2 + 8^2}\)
Panjang sisi miring = \(\sqrt{36 + 64}\)
Panjang sisi miring = \(\sqrt{100} = 10\)
\(\cos \gamma = \dfrac{\text{samping}}{\text{miring}}\)
\(\cos \gamma = -\dfrac{8}{10}\)
\(\cos \gamma = -0,8\)
Di kuadran II \(\cos \gamma\) bernilai negatif