Quiz-summary
0 of 10 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
Information
Dear Students,
Welcome to today’s quiz! This is your opportunity to demonstrate what you’ve learned so far, so do your best. Please keep in mind that you have a maximum of 45 minutes to complete all the questions. Make sure to manage your time wisely and answer each question thoughtfully.
Good luck!
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Results
0 of 10 questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 points, (0)
Categories
- Not categorized 0%
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- Answered
- Review
-
Question 1 of 10
1. Question
1 pointsJika \(\sin 25^{\circ} = \dfrac{2m}{m^2 + 1}, \: m > 1\), maka \(\sec 25^{\circ} + \cot 65^{\circ} = \dotso\)
Correct
\(\sec 65^{\circ} + \cot 65^{\circ} = \dfrac{m^2 + 1}{m^2\:-\:1} + \dfrac{2m}{m^2\:-\:1}\)
\(\sec 65^{\circ} + \cot 65^{\circ} = \dfrac{m^2 + 2m + 1}{m^2\:-\:1}\)
\(\sec 65^{\circ} + \cot 65^{\circ} = \dfrac{(m + 1)^2}{(m + 1)(m\:-\:1)}\)
\(\sec 65^{\circ} + \cot 65^{\circ} = \dfrac{m + 1}{m\:-\:1}\)
Incorrect
\(\sec 65^{\circ} + \cot 65^{\circ} = \dfrac{m^2 + 1}{m^2\:-\:1} + \dfrac{2m}{m^2\:-\:1}\)
\(\sec 65^{\circ} + \cot 65^{\circ} = \dfrac{m^2 + 2m + 1}{m^2\:-\:1}\)
\(\sec 65^{\circ} + \cot 65^{\circ} = \dfrac{(m + 1)^2}{(m + 1)(m\:-\:1)}\)
\(\sec 65^{\circ} + \cot 65^{\circ} = \dfrac{m + 1}{m\:-\:1}\)
-
Question 2 of 10
2. Question
1 pointsJika \(\cos 17^{\circ} = m\), maka nilai dari \(\tan 73^{\circ}\:-\:\sin 17^{\circ} = \dotso\)
Correct
\(\tan 73^{\circ}\:-\:\sin 17^{\circ} = \dfrac{m}{\sqrt{1\:-\:m^2}}\:-\:\dfrac{\sqrt{1\:-\:m^2}}{1}\)
\(\tan 73^{\circ}\:-\:\sin 17^{\circ} = \dfrac{m\:-\:(1\:-\:m^2)}{\sqrt{1\:-\:m^2}}\)
\(\tan 73^{\circ}\:-\:\sin 17^{\circ} = \dfrac{m^2 + m \:-\:1}{\sqrt{1\:-\:m^2}}\)
Incorrect
\(\tan 73^{\circ}\:-\:\sin 17^{\circ} = \dfrac{m}{\sqrt{1\:-\:m^2}}\:-\:\dfrac{\sqrt{1\:-\:m^2}}{1}\)
\(\tan 73^{\circ}\:-\:\sin 17^{\circ} = \dfrac{m\:-\:(1\:-\:m^2)}{\sqrt{1\:-\:m^2}}\)
\(\tan 73^{\circ}\:-\:\sin 17^{\circ} = \dfrac{m^2 + m \:-\:1}{\sqrt{1\:-\:m^2}}\)
-
Question 3 of 10
3. Question
1 pointsPada gambar di bawah ini, \(\dfrac{\sin \beta + \cos \beta}{\sec \beta\:-\:\tan \beta} = \dotso\)
Correct
\(\dfrac{\sin \beta + \cos \beta}{\sec \beta\:-\:\tan \beta} = \dfrac{\frac{3}{5} + \frac{4}{5}}{\frac{5}{4}\:-\:\frac{3}{4}}\)
\(\dfrac{\sin \beta + \cos \beta}{\sec \beta\:-\:\tan \beta} = \dfrac{\frac{7}{5}}{\frac{2}{4}}\)
\(\dfrac{\sin \beta + \cos \beta}{\sec \beta\:-\:\tan \beta} = \dfrac{28}{10}\)
\(\dfrac{\sin \beta + \cos \beta}{\sec \beta\:-\:\tan \beta} = 2,8\)
Incorrect
\(\dfrac{\sin \beta + \cos \beta}{\sec \beta\:-\:\tan \beta} = \dfrac{\frac{3}{5} + \frac{4}{5}}{\frac{5}{4}\:-\:\frac{3}{4}}\)
\(\dfrac{\sin \beta + \cos \beta}{\sec \beta\:-\:\tan \beta} = \dfrac{\frac{7}{5}}{\frac{2}{4}}\)
\(\dfrac{\sin \beta + \cos \beta}{\sec \beta\:-\:\tan \beta} = \dfrac{28}{10}\)
\(\dfrac{\sin \beta + \cos \beta}{\sec \beta\:-\:\tan \beta} = 2,8\)
-
Question 4 of 10
4. Question
1 pointsDiketahui \(\csc \alpha = 5, \: 0 < \alpha < \frac{\pi}{2}\). Maka nilai dari \(\dfrac{5\cos \alpha + 4 \sin 15^{\circ}}{\cot \alpha \:-\:4\sin 75^{\circ}}= \dotso\)
Correct
\(\color{blue} \sin 15^{\circ} = \dfrac{\sqrt{6}\:-\:\sqrt{2}}{4}\)
\(\color{blue} \sin 75^{\circ} = \dfrac{\sqrt{6} + \sqrt{2}}{4}\)
\(\dfrac{5\cos \alpha + 4 \sin 15^{\circ}}{\cot \alpha \:-\:4\sin 75^{\circ}}\)
\(\dfrac{5\left(\dfrac{2\sqrt{6}}{5}\right) + 4\left(\dfrac{\sqrt{6}}{4}\:-\:\dfrac{\sqrt{2}}{4}\right)}{\dfrac{2\sqrt{6}}{1}\:-\:4\left(\dfrac{\sqrt{6}}{4} + \dfrac{\sqrt{2}}{4}\right)}\)
\(\dfrac{2\sqrt{6} + \sqrt{6}\:-\:\sqrt{2}}{2\sqrt{6} \:-\: \sqrt{6}\:-\:\sqrt{2}}\)
\(\dfrac{3\sqrt{6}\:-\:\sqrt{2}}{\sqrt{6}\:-\:\sqrt{2}}\times \color{blue}\dfrac{\sqrt{6} + \sqrt{2}}{\sqrt{6} + \sqrt{2}}\)
\(\dfrac{16 + 4\sqrt{3}}{4}\)
\(4 + \sqrt{3}\)
Incorrect
\(\color{blue} \sin 15^{\circ} = \dfrac{\sqrt{6}\:-\:\sqrt{2}}{4}\)
\(\color{blue} \sin 75^{\circ} = \dfrac{\sqrt{6} + \sqrt{2}}{4}\)
\(\dfrac{5\cos \alpha + 4 \sin 15^{\circ}}{\cot \alpha \:-\:4\sin 75^{\circ}}\)
\(\dfrac{5\left(\dfrac{2\sqrt{6}}{5}\right) + 4\left(\dfrac{\sqrt{6}}{4}\:-\:\dfrac{\sqrt{2}}{4}\right)}{\dfrac{2\sqrt{6}}{1}\:-\:4\left(\dfrac{\sqrt{6}}{4} + \dfrac{\sqrt{2}}{4}\right)}\)
\(\dfrac{2\sqrt{6} + \sqrt{6}\:-\:\sqrt{2}}{2\sqrt{6} \:-\: \sqrt{6}\:-\:\sqrt{2}}\)
\(\dfrac{3\sqrt{6}\:-\:\sqrt{2}}{\sqrt{6}\:-\:\sqrt{2}}\times \color{blue}\dfrac{\sqrt{6} + \sqrt{2}}{\sqrt{6} + \sqrt{2}}\)
\(\dfrac{16 + 4\sqrt{3}}{4}\)
\(4 + \sqrt{3}\)
Hint
\(\color{blue} \sin 15^{\circ} = \dfrac{\sqrt{6}\:-\:\sqrt{2}}{4}\) \(\color{blue} \sin 75^{\circ} = \dfrac{\sqrt{6} + \sqrt{2}}{4}\) -
Question 5 of 10
5. Question
1 pointsDiketahui \(\csc \alpha = 5, \:\alpha \text{ lancip}\). Nilai dari \(\dfrac{5\cos \alpha + \cot \alpha}{4\sin 75^{\circ}} = \dotso\)
Correct
\(\color{blue} \sin 75^{\circ} = \dfrac{\sqrt{6} + \sqrt{2}}{4}\)
\(\dfrac{5\cos \alpha + \cot \alpha}{4\sin 75^{\circ}}\)
\(\dfrac{5(\frac{2\sqrt{6}}{5}) + (\frac{2\sqrt{6}}{1})}{4(\frac{\sqrt{6} + \sqrt{2}}{4})}\)
\(\dfrac{4\sqrt{6}}{\sqrt{6} + \sqrt{2}} \times \color{blue} \dfrac{\sqrt{6}\:-\:\sqrt{2}}{\sqrt{6}\:-\:\sqrt{2}}\)
\(\dfrac{24\:-\:8\sqrt{3}}{4}\)
\(6\:-\:2\sqrt{3}\)
Incorrect
\(\color{blue} \sin 75^{\circ} = \dfrac{\sqrt{6} + \sqrt{2}}{4}\)
\(\dfrac{5\cos \alpha + \cot \alpha}{4\sin 75^{\circ}}\)
\(\dfrac{5(\frac{2\sqrt{6}}{5}) + (\frac{2\sqrt{6}}{1})}{4(\frac{\sqrt{6} + \sqrt{2}}{4})}\)
\(\dfrac{4\sqrt{6}}{\sqrt{6} + \sqrt{2}} \times \color{blue} \dfrac{\sqrt{6}\:-\:\sqrt{2}}{\sqrt{6}\:-\:\sqrt{2}}\)
\(\dfrac{24\:-\:8\sqrt{3}}{4}\)
\(6\:-\:2\sqrt{3}\)
Hint
\(\color{blue} \sin 75^{\circ} = \dfrac{\sqrt{6} + \sqrt{2}}{4}\) -
Question 6 of 10
6. Question
1 pointsDiketahui \(\sec \theta = 7\), dan \(\pi < \theta < 2\pi\). Maka nilai dari \(2\tan \theta\:-\:21\sin \theta + 8\sin \frac{\pi}{3} + 10 \cos \frac{\pi}{6} = \dotso\)
Correct
Karena \(\sec \theta\) bernilai positif, maka \(\theta\) terletak di kuadran IV.
\(2\tan \theta\:-\:21\sin \theta + 8\sin \frac{\pi}{3} + 10 \cos \frac{\pi}{6}\)
\(2(-4\sqrt{3})\:-\:21(-\frac{4\sqrt{3}}{7}) + 8(\frac{\sqrt{3}}{2}) + 10(\frac{\sqrt{3}}{2})\)
\(-8\sqrt{3} + 12\sqrt{3} + 4\sqrt{3} + 5\sqrt{3}\)
\(13\sqrt{3}\)
Incorrect
Karena \(\sec \theta\) bernilai positif, maka \(\theta\) terletak di kuadran IV.
\(2\tan \theta\:-\:21\sin \theta + 8\sin \frac{\pi}{3} + 10 \cos \frac{\pi}{6}\)
\(2(-4\sqrt{3})\:-\:21(-\frac{4\sqrt{3}}{7}) + 8(\frac{\sqrt{3}}{2}) + 10(\frac{\sqrt{3}}{2})\)
\(-8\sqrt{3} + 12\sqrt{3} + 4\sqrt{3} + 5\sqrt{3}\)
\(13\sqrt{3}\)
-
Question 7 of 10
7. Question
1 pointsNilai dari \(\dfrac{\tan 45^{\circ} + \tan 60^{\circ} }{2\cos 30^{\circ}\:-\:\cos 0^{\circ} \:-\:\sin 90^{\circ}} = \dotso\)
Correct
\(\dfrac{\tan 45^{\circ} + \tan 60^{\circ} }{2\cos 30^{\circ}\:-\:\cos 0^{\circ} \:-\:\sin 90^{\circ}}\)
\(\dfrac{1 + \sqrt{3}}{2(\frac{1}{2}\sqrt{3})\:-\:1\:-\:1}\)
\(\dfrac{1 + \sqrt{3}}{\sqrt{3}\:-\:2} \times \color{blue} \dfrac{\sqrt{3} + 2}{\sqrt{3} + 2}\)
\(\dfrac{3\sqrt{3} + 5}{-1}\)
\(-3\sqrt{3}\:-\:5\)
Incorrect
\(\dfrac{\tan 45^{\circ} + \tan 60^{\circ} }{2\cos 30^{\circ}\:-\:\cos 0^{\circ} \:-\:\sin 90^{\circ}}\)
\(\dfrac{1 + \sqrt{3}}{2(\frac{1}{2}\sqrt{3})\:-\:1\:-\:1}\)
\(\dfrac{1 + \sqrt{3}}{\sqrt{3}\:-\:2} \times \color{blue} \dfrac{\sqrt{3} + 2}{\sqrt{3} + 2}\)
\(\dfrac{3\sqrt{3} + 5}{-1}\)
\(-3\sqrt{3}\:-\:5\)
-
Question 8 of 10
8. Question
1 pointsNilai dari \(\dfrac{6\cdot \cos \frac{\pi}{3}\cdot \cos \frac{\pi}{4}\:-\:6\cdot\sin \frac{\pi}{3}\cdot \sin \frac{\pi}{4}}{\cos \frac{\pi}{3} + \tan \frac{\pi}{4}}= \dotso\)
Correct
\(\dfrac{6\cdot \cos \frac{\pi}{3}\cdot \cos \frac{\pi}{4}\:-\:6\cdot \sin \frac{\pi}{3}\cdot \sin \frac{\pi}{4}}{\cos \frac{\pi}{3} + \tan \frac{\pi}{4}}\)
\(\dfrac{6\cdot \frac{1}{2} \cdot \frac{1}{2} \sqrt{2}\:-\:6\cdot \frac{1}{2}\sqrt{3}\cdot \frac{1}{2}\sqrt{2}}{\frac{1}{2} + 1}\)
\(\dfrac{\frac{6}{4}\sqrt{2}\:-\:\frac{6}{4}\sqrt{6}}{\frac{3}{2}}\)
\(\frac{6}{4}\cdot \frac{2}{3}\cdot (\sqrt{2}\:-\:\sqrt{6})\)
\(\sqrt{2}\:-\:\sqrt{6}\)
Incorrect
\(\dfrac{6\cdot \cos \frac{\pi}{3}\cdot \cos \frac{\pi}{4}\:-\:6\cdot \sin \frac{\pi}{3}\cdot \sin \frac{\pi}{4}}{\cos \frac{\pi}{3} + \tan \frac{\pi}{4}}\)
\(\dfrac{6\cdot \frac{1}{2} \cdot \frac{1}{2} \sqrt{2}\:-\:6\cdot \frac{1}{2}\sqrt{3}\cdot \frac{1}{2}\sqrt{2}}{\frac{1}{2} + 1}\)
\(\dfrac{\frac{6}{4}\sqrt{2}\:-\:\frac{6}{4}\sqrt{6}}{\frac{3}{2}}\)
\(\frac{6}{4}\cdot \frac{2}{3}\cdot (\sqrt{2}\:-\:\sqrt{6})\)
\(\sqrt{2}\:-\:\sqrt{6}\)
-
Question 9 of 10
9. Question
1 pointsTerdapat beberapa pernyataan:
(1) \(\sin 150^{\circ} > \sin 190^{\circ}\)
(2) \(\cos 170^{\circ} < \tan 222^{\circ}\)
(3) \(\sin 100^{\circ} < \sin 200^{\circ}\)
(4) \(\sec 290^{\circ} > \sec 150^{\circ}\)
Banyaknya pernyataan yang benar ada sebanyak …
Correct
(1) \(\sin 150^{\circ}\color{red} (+) \color{black} > \sin 190^{\circ} \color{red} (-) \text{ benar}\)
(2) \(\cos 170^{\circ} \color{red} (-) \color{black} < \tan 222^{\circ}\color{red} (+) \text{ benar}\)
(3) \(\sin 100^{\circ} \color{red} (+) \color{black} < \sin 200^{\circ}\color{red} (-) \text{ salah}\)
(4) \(\sec 290^{\circ} \color{red} (+) \color{black} > \sec 150^{\circ}\color{red} (-) \text{ benar}\)
Banyaknya pernyataan yang benar ada sebanyak 3
Incorrect
(1) \(\sin 150^{\circ}\color{red} (+) \color{black} > \sin 190^{\circ} \color{red} (-) \text{ benar}\)
(2) \(\cos 170^{\circ} \color{red} (-) \color{black} < \tan 222^{\circ}\color{red} (+) \text{ benar}\)
(3) \(\sin 100^{\circ} \color{red} (+) \color{black} < \sin 200^{\circ}\color{red} (-) \text{ salah}\)
(4) \(\sec 290^{\circ} \color{red} (+) \color{black} > \sec 150^{\circ}\color{red} (-) \text{ benar}\)
Banyaknya pernyataan yang benar ada sebanyak 3
-
Question 10 of 10
10. Question
1 pointsDiketahui \(\tan \text{ M} = -1,875, \: \sin \text{ N} = 0,6\), M dan N adalah sudut tumpul. Nilai dari \(\dfrac{\sin \text{ M}\:-\:\cos \text{ N}}{\cos \text{ M} + \sin \text{ N}} = \dotso\)
Correct
\(\tan \text{ M} = -1.875 = -\dfrac{15}{8}\)
\(\sin \text{ N} = 0,6 = \dfrac{6}{10}\)
\(\dfrac{\sin \text{ M}\:-\:\cos \text{ N}}{\cos \text{ M} + \sin \text{ N}}\)
\(\dfrac{\frac{15}{17}\:-\:(-\frac{8}{10})}{(-\frac{8}{17}) + \frac{6}{10}}\)
\(\dfrac{\frac{143}{85}}{\frac{11}{85}}\)
\(\frac{143}{\cancel{85}}\times \frac{\cancel{85}}{11}\)
\(13\)
Incorrect
\(\tan \text{ M} = -1.875 = -\dfrac{15}{8}\)
\(\sin \text{ N} = 0,6 = \dfrac{6}{10}\)
\(\dfrac{\sin \text{ M}\:-\:\cos \text{ N}}{\cos \text{ M} + \sin \text{ N}}\)
\(\dfrac{\frac{15}{17}\:-\:(-\frac{8}{10})}{(-\frac{8}{17}) + \frac{6}{10}}\)
\(\dfrac{\frac{143}{85}}{\frac{11}{85}}\)
\(\frac{143}{\cancel{85}}\times \frac{\cancel{85}}{11}\)
\(13\)