Sudut Berelasi

Sebelum kita belajar tentang relasi sudut dalam trigonometri, kita pahami terlebih dahulu tentang letak kuadran yang berpengaruh pada nilai fungsi trigonometri

 

Letak Kuadran

 

Rendered by QuickLaTeX.com

Keterangan:
  • Pada kuadran I \([0^{\circ} – 90^{\circ}]\) semua fungsi trigonometri bernilai positif
  • Pada kuadran II \([90^{\circ} – 180^{\circ}]\) fungsi sinus dan juga cosecan bernilai positif, fungsi trigonometri yang lainnya bernilai negatif
  • Pada kuadran III \([180^{\circ} – 270^{\circ}]\) fungsi tangen dan juga cotangen bernilai positif, fungsi trigonometri yang lainnya bernilai negatif
  • Pada kuadran IV \([270^{\circ} – 360^{\circ}]\) fungsi cosinus dan juga secan bernilai postif, fungsi trigonometri yang lainnya bernilai negatif

Relasi Sudut \((90^{\circ} -\: \alpha)\) dan \((90^{\circ} + \alpha)\)

\(\text{Fungsi trigonometri berubah}\)

\((90^{\circ} -\: \alpha)\) \((90^{\circ} + \alpha)\) 
$$\sin (90^{\circ} -\:\alpha) = \cos \alpha$$ $$\sin (90^{\circ} +\:\alpha) =\: \cos \alpha$$
$$\cos (90^{\circ} -\:\alpha) = \sin \alpha$$ $$\cos (90^{\circ} +\:\alpha) = -\sin \alpha$$
$$\tan (90^{\circ} -\:\alpha) = \cot \alpha$$ $$\tan (90^{\circ} +\:\alpha) = -\cot \alpha$$
$$\csc (90^{\circ} -\:\alpha) = \sec \alpha$$ $$\csc (90^{\circ} +\:\alpha) = \:\sec \alpha$$
$$\sec (90^{\circ} -\:\alpha) = \csc \alpha$$ $$\sec (90^{\circ} +\:\alpha) = -\csc \alpha$$
$$\cot (90^{\circ} -\:\alpha) = \tan \alpha$$ $$\cot (90^{\circ} +\:\alpha) = -\tan \alpha$$
Contoh:
  • \(\sin{30^{\circ}} = \sin{(90^{\circ} – 60^{\circ})} = +\cos 60^{\circ} = +\dfrac{1}{2}\)

\(\sin{30^{\circ}}\) berada di kuadran I sehingga nilainya positif

  • \(\cos{45^{\circ}} = \cos{(90^{\circ} – 45^{\circ})} = +\sin 45^{\circ} = +\dfrac{1}{2}\sqrt{2}\)

\(\cos{45^{\circ}}\) berada di kuadran I sehingga nilainya positif

  • \(\tan{60^{\circ}} = \tan{(90^{\circ} – 30^{\circ})} = +\cot 30^{\circ} = +\sqrt{3}\)

\(\tan{60^{\circ}}\) berada di kuadran I sehingga nilainya positif

  • \(\sin{120^{\circ}} = \sin{(90^{\circ} + 30^{\circ})} = +\cos 30^{\circ} = +\dfrac{1}{2}\sqrt{3}\)

\(\sin{120^{\circ}}\) berada di kuadran II sehingga nilainya positif

  • \(\cos{150^{\circ}} = \cos{(90^{\circ} + 60^{\circ})} = -\sin 60^{\circ} = -\dfrac{1}{2}\sqrt{3}\)

\(\cos{150^{\circ}}\) berada di kuadran II sehingga nilainya negatif

  • \(\tan{135^{\circ}} = \tan{(90^{\circ} + 45^{\circ})} = -\cot 45^{\circ} = -1\)

\(\tan{135^{\circ}}\) berada di kuadran II sehingga nilainya negatif

Relasi Sudut \((180^{\circ} -\: \alpha)\) dan \((180^{\circ} + \alpha)\)

\(\text{Fungsi trigonometri tetap}\) 

\((180^{\circ} -\: \alpha)\) \((180^{\circ} + \alpha)\) 
$$\sin (180^{\circ} -\:\alpha) = \:\sin\alpha$$ $$\sin (180^{\circ} +\:\alpha) =-\sin\alpha$$
$$\cos (180^{\circ} -\:\alpha) = -\cos \alpha$$ $$\cos (180^{\circ} +\:\alpha) = -\cos \alpha$$
$$\tan (180^{\circ} -\:\alpha) = -\tan\alpha$$ $$\tan (180^{\circ} +\:\alpha) = \:\tan \alpha$$
$$\csc (180^{\circ} -\:\alpha) = \:\csc \alpha$$ $$\csc (180^{\circ} +\:\alpha) = -\csc \alpha$$
$$\sec (180^{\circ} -\:\alpha) = -\sec \alpha$$ $$\sec (180^{\circ} +\:\alpha) = -\sec \alpha$$
$$\cot (180^{\circ} -\:\alpha) = -\cot\alpha$$ $$\cot (180^{\circ} +\:\alpha) = \:\cot \alpha$$
Contoh:
  • \(\sin{135^{\circ}} = \sin{(180^{\circ} – 45^{\circ})} = +\sin 45^{\circ} = +\dfrac{1}{2}\sqrt{2}\)

\(\sin{135^{\circ}}\) berada di kuadran II sehingga nilainya positif

  • \(\sec{150^{\circ}} = \sec{(180^{\circ} – 30^{\circ})} = -\sec 30^{\circ} = -\dfrac{2}{3}\sqrt{3}\)

\(\sec{150^{\circ}}\) berada di kuadran II sehingga nilainya negatif

  • \(\csc{120^{\circ}} = \csc{(180^{\circ} – 60^{\circ})} = +\csc 60^{\circ} = +\dfrac{2}{3}\sqrt{3}\)

\(\csc{120^{\circ}}\) berada di kuadran II sehingga nilainya positif

  • \(\tan{225^{\circ}} = \tan{(180^{\circ} + 45^{\circ})} = +\tan 45^{\circ} = +1\)

\(\tan{225^{\circ}}\) berada di kuadran III sehingga nilainya positif

  • \(\cos{210^{\circ}} = \cos{(180^{\circ} + 30^{\circ})} = -\cos 30^{\circ} = -\dfrac{1}{2}\sqrt{3}\)

\(\cos{210^{\circ}}\) berada di kuadran III sehingga nilainya negatif

  • \(\sin{240^{\circ}} = \sin{(180^{\circ} + 60^{\circ})} = -\sin 60^{\circ} =-\dfrac{1}{2}\sqrt{3}\)

\(\sin{240^{\circ}}\) berada di kuadran III sehingga nilainya negatif

Relasi Sudut \((270^{\circ} -\: \alpha)\) dan \((270^{\circ} + \alpha)\)

\(\text{Fungsi trigonometri berubah}\) 

\((270^{\circ} -\: \alpha)\) \((270^{\circ} + \alpha)\) 
$$\sin (270^{\circ} -\:\alpha) = -\cos\alpha$$ $$\sin (270^{\circ} +\:\alpha) =-\cos\alpha$$
$$\cos (270^{\circ} -\:\alpha) = -\sin \alpha$$ $$\cos (270^{\circ} +\:\alpha) = \:\sin\alpha$$
$$\tan (270^{\circ} -\:\alpha) = \:\cot\alpha$$ $$\tan (270^{\circ} +\:\alpha) = -\cot \alpha$$
$$\csc (270^{\circ} -\:\alpha) = -\sec \alpha$$ $$\csc (270^{\circ} +\:\alpha) = -\sec \alpha$$
$$\sec (270^{\circ} -\:\alpha) = -\csc \alpha$$ $$\sec (270^{\circ} +\:\alpha) = \:\csc\alpha$$
$$\cot (270^{\circ} -\:\alpha) = \:\tan\alpha$$ $$\cot (270^{\circ} +\:\alpha) = -\tan\alpha$$
Contoh:
  • \(\sin{240^{\circ}} = \sin{(270^{\circ} – 30^{\circ})} = -\cos 30^{\circ} = -\dfrac{1}{2}\sqrt{3}\)

\(\sin{240^{\circ}}\) berada di kuadran III sehingga nilainya negatif

  • \(\cos{240^{\circ}} = \cos{(270^{\circ} – 30^{\circ})} = -\sin 30^{\circ} = -\dfrac{1}{2}\)

\(\cos{240^{\circ}}\) berada di kuadran III sehingga nilainya negatif

  • \(\sec{225^{\circ}} = \sec{(270^{\circ} – 45^{\circ})} = -\csc 45^{\circ} = -\sqrt{2}\)

\(\sec{225^{\circ}}\) berada di kuadran III sehingga nilainya negatif

  • \(\tan{300^{\circ}} = \tan{(270^{\circ} + 30^{\circ})} = -\cot 30^{\circ} = -\sqrt{3}\)

\(\tan{300^{\circ}}\) berada di kuadran IV sehingga nilainya negatif

  • \(\csc{315^{\circ}} = \csc{(270^{\circ} + 45^{\circ})} = -\sec 45^{\circ} = -\sqrt{2}\)

\(\csc{315^{\circ}}\) berada di kuadran IV sehingga nilainya negatif

  • \(\cos{330^{\circ}} = \cos{(270^{\circ} + 60^{\circ})} = +\sin 60^{\circ} = +\dfrac{1}{2}\sqrt{3}\)

\(\cos{330^{\circ}}\) berada di kuadran IV sehingga nilainya positif

Relasi Sudut \((360^{\circ} -\: \alpha)\) 

\(\text{Fungsi trigonometri tetap}\) 

\((360^{\circ} -\: \alpha)\)
$$\sin (360^{\circ} -\:\alpha) = -\sin\alpha$$
$$\cos (360^{\circ} -\:\alpha) = \:\cos \alpha$$
$$\tan (360^{\circ} -\:\alpha) = -\tan\alpha$$
$$\csc (360^{\circ} -\:\alpha) = -\csc\alpha$$
$$\sec (360^{\circ} -\:\alpha) = \:\sec \alpha$$
$$\cot (360^{\circ} -\:\alpha) = -\cot\alpha$$
Contoh:
  • \(\sec{300^{\circ}} = \sec{(360^{\circ} – 60^{\circ})} = +\sec 60^{\circ} = +2\)

\(\sec{300^{\circ}}\) berada di kuadran IV sehingga nilainya positif

  • \(\sin{330^{\circ}} = \sin{(360^{\circ} – 30^{\circ})} = -\sin 30^{\circ} = -\dfrac{1}{2}\)

\(\sin{330^{\circ}}\) berada di kuadran IV sehingga nilainya negatif

  • \(\tan{315^{\circ}} = \tan{(360^{\circ} – 45^{\circ})} = -\tan 45^{\circ} = -1\)

\(\tan{315^{\circ}}\) berada di kuadran IV sehingga nilainya negatif

CONTOH SOAL

  Soal 1 Tentukan nilai dari \(\dfrac{\sin 150^{\circ} + \cos 300^{\circ}}{\cos 360^{\circ} + \tan 225^{\circ}}\)    
Soal 2 Tentukan nilai dari \(\dfrac{\sin 210^{\circ}\cdot \cos 180^{\circ}\:-\:\sin 330^{\circ}\cdot \cos 240^{\circ}}{\tan 300^{\circ}}\)  
Soal 3 Manakah pernyataan di bawah ini yang benar? (1)  \(\sin (90^{\circ} + \theta) = -\sin \theta\) (2)  \(\cos (270^{\circ}\:-\:\theta) = \sin \theta\) (3)  \(\cos (360^{\circ}\:-\:\theta) = \cos \theta\) (4)  \(\tan (180^{\circ} + \theta) = -\tan \theta\) (5)  \(\sec (90^{\circ} + \theta) = -\cos \theta\)    
Soal 4 Tentukan bentuk sederhana dari \(\dfrac{\sin (\frac{1}{2}\pi\:-\:x)\cdot \cos (\frac{3}{2}\pi\:-\:x)}{\cos (2\pi\:-\:x)}\)  
Soal 5 Diketahui \(\sin \theta = -\dfrac{7}{25}\), dengan \(270^{\circ} < \theta < 360^{\circ}\). Tentukan nilai dari \(\sec \theta + \tan \theta\)  

Leave a Reply

Your email address will not be published. Required fields are marked *