Soal 1
\(^2\log_{}{7} + ^2\log_{}{4} \:-\: ^2\log_{}{14} = \dotso\)
A. 0
B. 1
C. 2
D. 3
Jawaban = B
\(^2\log_{}{7} + ^2\log_{}{4} \:-\: ^2\log_{}{14}\)
\(^2\log_{}{\frac{7\times 4}{14}}\)
\(^2\log_{}{\frac{28}{14}}\)
\(^2\log_{}{2}\)
\(1\)
Soal 2
\(^9\log_{}{4} + ^3\log_{}{18} \:-\: 2 \cdot ^3\log_{}{2} = \dotso\)
A. 0
B. 1
C. 2
D. 3
Jawaban = C
\(^9\log_{}{4} + ^3\log_{}{18} \:-\: 2 \cdot ^3\log_{}{2}\)
\(^{3^2}\log_{}{2^2} + ^3\log_{}{18} \:-\: ^3\log_{}{2^2}\)
\(\frac{2}{2}\cdot ^3\log_{}{2} + ^3\log_{}{18} \:-\: ^3\log_{}{4}\)
\(^3\log_{}{2} + ^3\log_{}{18} \:-\: ^3\log_{}{4}\)
\(^3\log_{}{\frac{2\times 18}{4}}\)
\(^3\log_{}{\frac{36}{4}}\)
\(^3\log_{}{9}\)
\(^{3^1}\log_{}{3^2}\:\:\:\:\:\color{blue}\text{gunakan sifat}\: ^{a^m}\log_{}{b^n}=\frac{n}{m}\cdot ^a\log_{}{b}\)
\(\frac{2}{1}\times ^3\log_{}{3}\:\:\:\:\:\color{blue}\text{ingat}\:^a\log_{}{a}=1\)
\(2\times 1\)
\(2\)
Soal 3
\(^3\log_{}{27} + ^7\log_{}{\frac{1}{49}} \:-\: 3^{^3\log_{}{4}}= \dotso\)
A. −4
B. −3
C. 3
D. 4
Jawaban = B
\(^3\log_{}{27} + ^7\log_{}{\frac{1}{7^2}} \:-\: \cancel{3}^{^\cancel{3}\log_{}{4}}\)
\(\color{blue}\text{gunakan sifat}\:a^{^a\log_{}{b}}=b\)
\(^{3^1}\log_{}{3^3} + ^{7^1}\log_{}{7^{-2}}\:-\: 4\)
\(\color{blue}\text{gunakan sifat}\: ^{a^m}\log_{}{b^n}=\frac{n}{m}\cdot ^a\log_{}{b}\)
\(\frac{3}{1} \cdot ^3\log_{}{3} + \frac{-2}{1} \cdot ^7\log_{}{7}\:-\: 4\)
\(3 + (-2)\:-\: 4\)
\(-3\)
Soal 4
\(\dfrac{(^3\log_{}{45})^2 \:-\: (^3\log_{}{5})^2 }{^3\log_{}{15}}= \dotso\)
A. −4
B. −2
C. 0
D. 2
Jawaban = D
\(\dfrac{(^3\log_{}{45})^2 \:-\: (^3\log_{}{5})^2 }{^3\log_{}{15}}\)
\(\dfrac{(^3\log_{}{45} + ^3\log_{}{5})(^3\log_{}{45} \:-\: ^3\log_{}{5})}{^3\log_{}{15}}\)
\(\color{blue} \text{a² − b²=(a + b)(a − b)}\)
\(\dfrac{(^3\log_{}{(45\times 5)})(^3\log_{}{\frac{45}{15}})}{^3\log_{}{15}}\)
\(\dfrac{^3\log_{}{225}\cdot ^3\log_{}{3}}{^3\log_{}{15}}\)
\(\dfrac{^3\log_{}{15^2}}{^3\log_{}{15}}\)
\(2\cdot \dfrac{\cancel{^3\log_{}{15}}}{\cancel{^3\log_{}{15}}}\)
\(2\)
Soal 5
\(^2\log_{}{3^2}\times ^3\log_{}{\sqrt{5}}\times ^5\log_{}{8}=\dotso\)
A. 2
B. 3
C. 4
D. 5
Jawaban = B
\(^2\log_{}{3^2}\times ^3\log_{}{\sqrt{5}}\times ^5\log_{}{8}\)
\(2\cdot ^2\log_{}{3}\times ^3\log_{}{5^{\frac{1}{2}}}\times ^5\log_{}{2^3}\)
\(2\cdot ^2\log_{}{3}\times \frac{1}{2}\cdot ^3\log_{}{5}\times 3\cdot ^5\log_{}{2}\)
\(\cancel{2}\cdot \frac{1}{\cancel{2}} \cdot 3 \times ^2\log_{}{\cancel{3}}\cdot ^\cancel{3}\log_{}{\cancel{5}}\cdot ^\cancel{5}\log_{}{2}\)
\(3\cdot ^2\log{}{2}\)
\(3\)
Soal 6
Jika \(^4\log_{}{27} = 6m\), maka \(^9\log_{}{16}=\dotso\)
A. \(\dfrac{1}{2m}\)
B. \(\dfrac{1}{4m}\)
C. \(\dfrac{1}{8m}\)
D \(\dfrac{1}{10m}\)
Jawaban = A
Sederhanakan bentuk \(^4\log_{}{27} = 6m\) terlebih dahulu,
\(^{2^2}\log_{}{3^3} = 6m\)
\(\color{blue}\text{gunakan sifat}\: ^{a^m}\log_{}{b^n}=\frac{n}{m}\cdot ^a\log_{}{b}\)
\(\frac{3}{2}\cdot ^2\log_{}{3} =6m\)
\(^2\log_{}{3} = \frac{2}{3}\cdot 6m\)
\(^2\log_{}{3} = 4m\)
Selanjutnya,
\(^9\log_{}{16}=^{3^2}\log_{}{2^4}\)
\(\frac{4}{2}\cdot ^3\log_{}{2}\)
\(\frac{4}{2}\cdot \frac{1}{^2\log_{}{3}}\)
\(2\cdot \frac{1}{4m}\)
\(\frac{1}{2m}\)
Soal 7
Jika \(^2\log_{}{5}= a\) dan \(^5\log_{}{7}= b\) maka nilai \(^{35}\log_{}{40} = \dotso\)
A. \(\dfrac{3+a}{a+b}\)
B. \(\dfrac{3-a}{a+ab}\)
C. \(\dfrac{3+a}{a+ab}\)
D. \(\dfrac{3+a}{a-ab}\)
Jawaban = C
Gunakan sifat logaritma \(^a\log_{}{b}=\frac{\log_{}{b}}{\log_{}{a}}\) untuk menyederhanakan \(^{35}\log_{}{40}\)
\(^{35}\log_{}{40} = \dfrac{^m\log_{}{40}}{^m\log_{}{35}}\)
\(\dfrac{^m\log_{}{(2^3\times 5)}}{^m\log_{}{(5\times 7)}}\)
\(\dfrac{^m\log_{}{2^3}+^m\log_{}{5}}{^m\log_{}{5}+^m\log_{}{7}}\)
\(\dfrac{3\cdot^m\log_{}{2}+^m\log_{}{5}}{^m\log_{}{5}+^m\log_{}{7}}\)
Selanjutnya pilih basis \(m\) yang cocok,
\(\dfrac{3\cdot^5\log_{}{2}+^5\log_{}{5}}{^5\log_{}{5}+^5\log_{}{7}}\:\:\:\:\:\color{blue}\text{pilih m = 5}\)
\(\dfrac{3\cdot \frac{1}{^2\log_{}{5}}+1}{1+^5\log_{}{7}}\)
Selanjutnya ganti \(^2\log_{}{5}\) dengan \(a\) dan \(^5\log_{}{7}\) dengan \(b\)
\(\dfrac{3\cdot \frac{1}{a}+1}{1+b}\)
\(\color{blue}\text{kalikan pembilang dan penyebut dengan } a\)
\(\dfrac{3+a}{a+ab}\)
Soal 8
Jika \(\log_{}{2} = 0,301\) dan \(\log_{}{3} = 0,477\) maka nilai dari \(\log_{}{120}\) adalah …
A. 2,016
B. 2,029
C. 2,079
D. 2,189
Jawaban = C
\(\log_{}{120}=\log_{}{(2^3\times 3 \times 5})\)
\(\log_{}{120}=3\log_{}{2} + \log_{}{3} + \log_{}{5}\)
\(\log_{}{120}=3(0,301) + 0,477 + \log_{}{5}\)
\(\log_{}{5}=\log_{}{\frac{10}{2}}\)
\(\log_{}{5}=\log_{}{10}\:-\: \log_{}{2}\)
\(\log_{}{5}=1\:-\: 0,301\)
\(\log_{}{5}=0,699\)
Jadi,
\(\log_{}{120}=3(0,301) + 0,477 + \log_{}{5}\)
\(\log_{}{120}=0,903+ 0,477 + 0,699=2,079\)
Soal 9
\(2\cdot ^2\log_{}{2\sqrt{2}} + ^2\log_{}{0,125}\:-\: ^{0,5}\log_{}{2} = \dotso\)
A. −5
B. −3
C. −1
D. 1
Jawaban = D
\(2\cdot ^2\log_{}{2\sqrt{2}} + ^2\log_{}{0,125}\:-\: ^{0,5}\log_{}{2}\)
\(2\cdot ^2\log_{}{2^{\frac{3}{2}}} + ^2\log_{}{\frac{1}{8}}\:-\: ^{2^{-1}}\log_{}{2}\)
\(2\cdot \frac{3}{2}\cdot ^2\log_{}{2} + ^2\log_{}{2^{-3}}\:-\: (-^{2}\log_{}{2})\)
\(2\cdot \frac{3}{2} \:-\: 3+1\)
\(1\)
Soal 10
Hasil perhitungan \(\dfrac{2+\log_{}{(\log_{}{5})}}{2\log_{}{(\log_{}{5^{100}})}}\) adalah …
A. 0,9
B. 0,8
C. 0,6
D. 0,5
Jawaban = D
\(\dfrac{2+\log_{}{(\log_{}{5})}}{2\log_{}{(\log_{}{5^{100}})}}\)
\(\color{blue}\text{ubah 2 menjadi }\log_{}{100}\)
\(\dfrac{\log_{}{100}+\log_{}{(\log_{}{5})}}{2\log_{}{(\log_{}{5^{100}})}}\)
\(\dfrac{\log_{}{(100\cdot\log_{}{5})}}{2\log_{}{(\log_{}{5^{100}})}}\)
\(\dfrac{\cancel{(\log_{}{\log_{}{5^{100}}})}}{2\cancel{\log_{}{(\log_{}{5^{100}}})}}\)
\(\dfrac{1}{2}\)
\(0,5\)
Jika \(^{\text{4p}}\log_{}{100} =\: ^{\text{p}}\log_{}{25}\), maka nilai \(\text{2p}^2 = \dotso\)
A. 1000
B. 1200
C. 1250
D. 1450
E. 2000
Jawaban = C
\(\text{Misal } ^{\text{4p}}\log_{}{100} = a\)
\((\text{4p})^a = 100\)
\(4^a\cdot \text{p}^a = 100\)
\(\text{p}^a = \dfrac{100}{4^a}\dotso\dotso (1)\)
\(^{\text{p}}\log_{}{25} = a\)
\(\text{p}^a = 25\dotso\dotso (2)\)
Substitusikan persamaan (1) ke persamaan (2)
\(\dfrac{100}{4^a} = 25\)
\(100 = 25\cdot 4^a\)
\(\dfrac{100}{25} = 4^a\)
\(4 = 4^a\)
\(a = 1\)
Untuk mencari nilai \(p\) substitusikan \(a = 1\) ke persamaan (1)
\(\text{p}^1 = \dfrac{100}{4^1}\)
\(\text{p}= 25\)
\(\text{2p}^2 = 2\cdot(25)^2\)
\(\text{2p}^2 = 1250\)
Jika \(3^x = 2\:-\:\sqrt{3}\) maka nilai \(^{2 + \sqrt{3}}\log 27^x\) adalah
A. −3
B. −2
C. −1
D. 2
E. 3
Jawaban = A
\(3^x = 2\:-\:\sqrt{3} \color{red} \times \dfrac{2 + \sqrt{3}}{2 + \sqrt{3}}\)
\(3^x = \dfrac{1}{2 + \sqrt{3}}\)
\(2 + \sqrt{3} = 3^{-x}\)
\(^{2 + \sqrt{3}}\log 27^x = ^{3^{-x}}\log 3^{3x}\)
\(^{2 + \sqrt{3}}\log 27^x = \dfrac{3x}{-x}\cdot ^3 \log 3\)
\(^{2 + \sqrt{3}}\log 27^x = -3\)
