Latihan Jumlah dan Selisih Fungsi Trigonometri 01

Soal 1

\(\cos \alpha + \cos (\alpha + 120^{\circ}) + \cos (\alpha + 240^{\circ}) = \dotso\)

(A)  0

(B)  1

(C)  2

(D)  3

(E)  4

 

Soal 2

Buktikan bahwa \(\dfrac{\sin 10^{\circ} + \sin 60^{\circ} + \sin 110^{\circ}}{\cos 10^{\circ} + \cos 60^{\circ} + \cos 110^{\circ}} = \tan 60^{\circ}\)

 

Soal 3

Tentukan nilai maksimum dan minimum dari \(y = \sin (x + 50^{\circ}) + \sin (x \:-\: 70^{\circ}) + 1\)

 

Soal 4

\(\dfrac{\sin \text{A} + \sin 5\text{A} + \sin 9\text{A}}{\cos \text{A} + \cos 5\text{A} + \cos 9\text{A}}=\dotso\)

(A)  \(\tan \text{A}\)

(B)  \(\tan \text{2A}\)

(C)  \(\tan \text{3A}\)

(D)  \(\tan \text{4A}\)

(E)  \(\tan \text{5A}\)

 

Soal 5

Jika \(\text{A, B, dan C}\) adalah sudut-sudut dalam sebuah segitiga, maka \(\sin \text{2A} + \sin \text{2B} + \sin \text{2C} = \dotso\)

(A)   \(\sin \text{A}\cdot \sin \text{B} \cdot \sin \text{C}\)

(B)   \(2\sin \text{A}\cdot \sin \text{B} \cdot \sin \text{C}\)

(C)   \(3\sin \text{A}\cdot \sin \text{B} \cdot \sin \text{C}\)

(D)   \(4\sin \text{A}\cdot \sin \text{B} \cdot \sin \text{C}\)

(E)   \(5\sin \text{A}\cdot \sin \text{B} \cdot \sin \text{C}\)

 

SOAL 6

\(\dfrac{\sin 5^{\circ} + \sin 20^{\circ} + \sin 35^{\circ}}{\cos 35^{\circ} + \cos 20^{\circ} + \cos 5^{\circ}}= \dotso\)

(A)  \(\sin 20^{\circ}\)

(B)  \(\cos 20^{\circ}\)

(C)  \(\tan 20^{\circ}\)

(D)  \(\cot 20^{\circ}\)

(E)  \(\sec 20^{\circ}\)