Soal 1
\(\cos \alpha + \cos (\alpha + 120^{\circ}) + \cos (\alpha + 240^{\circ}) = \dotso\)
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
Answer: A
\(\color{blue}\cos \text{A} + \cos \text{B} = 2\cos \dfrac{1}{2}\text{(A + B)}\cos \dfrac{1}{2}\text{(A − B)}\)
\(\cos \alpha + \cos (\alpha + 120^{\circ}) + \cos (\alpha + 240^{\circ})\)
\(2\cos \dfrac{1}{2}(\alpha + \alpha + 120^{\circ})\cos \dfrac{1}{2}(\alpha \:-\: \alpha \:-\: 120^{\circ} ) + \cos (\alpha + 240^{\circ})\)
\(2\cos (\alpha + 60^{\circ})\cdot\cos (-60^{\circ}) + \cos (\alpha + 240^{\circ})\)
\(\cancel{2}\cos (\alpha + 60^{\circ})\cdot \dfrac{1}{\cancel{2}} + \cos (\alpha + 240^{\circ})\)
\(\cos (\alpha + 60^{\circ}) + \cos (\alpha + 240^{\circ})\)
\(2\cos \dfrac{1}{2}(\alpha + 60^{\circ} +\alpha + 240^{\circ} )\cdot\cos \dfrac{1}{2}(\alpha + 60^{\circ}\:-\:\alpha \:-\: 240^{\circ})\)
\(2\cos \dfrac{1}{2}(2\alpha + 300^{\circ})\cdot\cos \dfrac{1}{2}(-180^{\circ})\)
\(2\cos (\alpha + 150^{\circ})\cdot\cos (-90^{\circ})\)
\(2\cos (\alpha + 150^{\circ}) \cdot 0\)
\(0\)
Soal 2
Buktikan bahwa \(\dfrac{\sin 10^{\circ} + \sin 60^{\circ} + \sin 110^{\circ}}{\cos 10^{\circ} + \cos 60^{\circ} + \cos 110^{\circ}} = \tan 60^{\circ}\)
\(\dfrac{\sin 110^{\circ} + \sin 10^{\circ} + \sin 60^{\circ}}{\cos 110^{\circ} + \cos 10^{\circ} + \cos 60^{\circ} }\)
\(\dfrac{2 \sin 60^{\circ} \cdot \cos 50^{\circ} + \sin 60^{\circ}}{2 \cos 60^{\circ} \cdot \cos 50^{\circ} + \cos 60^{\circ} }\)
\(\dfrac{\sin 60^{\circ} \cancel{(2\cos 50^{\circ} + 1)}}{\cos 60^{\circ} \cancel{(2\cos 50^{\circ} + 1)}}\)
\(\dfrac{\sin 60^{\circ}}{\cos 60^{\circ}}\)
\(\tan 60^{\circ}\)
Terbukti!
Soal 3
Tentukan nilai maksimum dan minimum dari \(y = \sin (x + 50^{\circ}) + \sin (x \:-\: 70^{\circ}) + 1\)
\(y = \sin (x + 50^{\circ}) + \sin (x \:-\: 70^{\circ}) + 1\)
\(y = 2 \sin \dfrac{1}{2}(x + 50^{\circ} +x \:-\: 70^{\circ} ) \cos \dfrac{1}{2}(x + 50^{\circ} \:-\: x + 70^{\circ} ) + 1\)
\(y = 2 \sin \dfrac{1}{2}(2x \:-\: 20^{\circ} ) \cos \dfrac{1}{2}(120^{\circ}) + 1\)
\(y = 2 \sin (x \:-\: 10^{\circ} ) \cos 60^{\circ} + 1\)
\(y = \cancel{2} \sin (x \:-\: 10^{\circ} ) \cdot \dfrac{1}{\cancel{2}} + 1\)
\(y = \sin (x \:-\: 10^{\circ}) + 1\)
Note:
\(\color{blue}\sin (x \:-\: 10^{\circ})\) memiliki nilai maksimum 1 dan nilai minimum −1
Jadi,
\(y_{\text{maksimum}} = 1 + 1 = 2\)
\(y_{\text{minimum}} = 1 \:-\: 1 = 0\)
Soal 4
\(\dfrac{\sin \text{A} + \sin 5\text{A} + \sin 9\text{A}}{\cos \text{A} + \cos 5\text{A} + \cos 9\text{A}}=\dotso\)
(A) \(\tan \text{A}\)
(B) \(\tan \text{2A}\)
(C) \(\tan \text{3A}\)
(D) \(\tan \text{4A}\)
(E) \(\tan \text{5A}\)
Answer: E
\(\dfrac{\sin \text{A} + \sin 9\text{A} + \sin 5\text{A}}{\cos \text{A} + \cos 9\text{A}+ \cos 5\text{A}}\)
\(\dfrac{2\sin \dfrac{1}{2}(\text{A} + \text{9A})\cos \dfrac{1}{2}(\text{A} \:-\: \text{9A})+\sin \text{5A}}{2\cos \dfrac{1}{2}(\text{A} + \text{9A})\cos \dfrac{1}{2}(\text{A} \:-\: \text{9A})+\cos \text{5A}}\)
\(\dfrac{2\sin \text{5A}\cdot \cos \text{4A} + \sin \text{5A}}{2\cos \text{5A}\cdot \cos \text{4A} + \cos \text{5A}}\)
\(\dfrac{\cancel{2}\sin \text{5A}\cancel{(\cos \text{4A} + 1)}}{\cancel{2}\cos \text{5A}\cancel{(\cos \text{4A} + 1)}}\)
\(\tan \text{5A}\)
Soal 5
Jika \(\text{A, B, dan C}\) adalah sudut-sudut dalam sebuah segitiga, maka \(\sin \text{2A} + \sin \text{2B} + \sin \text{2C} = \dotso\)
(A) \(\sin \text{A}\cdot \sin \text{B} \cdot \sin \text{C}\)
(B) \(2\sin \text{A}\cdot \sin \text{B} \cdot \sin \text{C}\)
(C) \(3\sin \text{A}\cdot \sin \text{B} \cdot \sin \text{C}\)
(D) \(4\sin \text{A}\cdot \sin \text{B} \cdot \sin \text{C}\)
(E) \(5\sin \text{A}\cdot \sin \text{B} \cdot \sin \text{C}\)
Answer: D
Dalam sebuah segitiga A + B + C = 180°, sehingga C = 180° − (A + B)
\(\sin \text{2A} + \sin \text{2B} + \sin \text{2C}\)
\(\sin \text{2A} + \sin \text{2B} + \sin 2[180^{\circ} \:-\: (\text{A + B})]\)
\(\sin \text{2A} + \sin \text{2B} + \sin [360^{\circ} \:-\: 2(\text{A + B})]\)
\(\color{purple}\sin \text{2A} + \sin \text{2B} \color{black}\:-\: \sin 2(\text{A + B})\)
\(\color{purple}2\sin \dfrac{1}{2}(\text{2A + 2B})\cos \dfrac{1}{2}(\text{2A – 2B}) \color{black}\:-\: 2\sin (\text{A + B})\cos (\text{A + B})\)
\(2\sin (\text{A + B})\cos (\text{A}\:-\:\text{B})\:-\:2\sin(\text{A + B})\cos (\text{A + B})\:\:\:\:\:\color{blue}\text{faktorkan}\)
\(2\sin (\text{A + B})\color{purple}[\cos (\text{A}\:-\:\text{B})\:-\:\cos (\text{A + B})]\)
\(2\sin (180^{\circ}\:-\:\text{C})\color{purple}[-2\sin \dfrac{1}{2}(\text{A − B + A + B})\sin \dfrac{1}{2} (\text{A − B − A − B})]\)
\(2\sin (180^{\circ}\:-\:\text{C})[-2\sin \dfrac{1}{2} (\text{2A})\sin \dfrac{1}{2} (\text{−2B})]\)
\(2\sin \text{C}(2\sin \text{A} \sin \text{B})\)
\(4\sin \text{A} \cdot \sin \text{B} \cdot \sin \text{C}\)
SOAL 6
\(\dfrac{\sin 5^{\circ} + \sin 20^{\circ} + \sin 35^{\circ}}{\cos 35^{\circ} + \cos 20^{\circ} + \cos 5^{\circ}}= \dotso\)
(A) \(\sin 20^{\circ}\)
(B) \(\cos 20^{\circ}\)
(C) \(\tan 20^{\circ}\)
(D) \(\cot 20^{\circ}\)
(E) \(\sec 20^{\circ}\)
Jawaban: C
Gunakan:
\(\color{blue}\sin \text{A} + \sin \text{B} = 2\sin \frac{1}{2}(\text{A + B})\cos \frac{1}{2} (\text{A − B})\)
\(\color{blue}\cos\text{A} + \cos \text{B} = 2\cos \frac{1}{2}(\text{A + B})\cos \frac{1}{2} (\text{A − B})\)
\(\dfrac{\sin 5^{\circ} + \sin 35^{\circ} + \sin 20^{\circ}}{\cos 5^{\circ} + \cos 35^{\circ} + \cos 20^{\circ}}\)
\(\dfrac{2\sin \frac{1}{2}(40^{\circ})\cos \frac{1}{2}(-30^{\circ}) + \sin 20^{\circ}}{2\cos \frac{1}{2} (40^{\circ}) \cos \frac{1}{2} (-30^{\circ}) + \cos 20^{\circ}}\)
\(\dfrac{2\sin 20^{\circ} \cos 15^{\circ} + \sin 20^{\circ}}{2\cos 20^{\circ} \cos 15^{\circ} + \cos 20^{\circ} }\)
\(\dfrac{\sin 20^{\circ}\cancel{(2\cos 15^{\circ} + 1)}}{\cos 20^{\circ}\cancel{(2\cos 15^{\circ} + 1)}}\)
\(\dfrac{\sin 20^{\circ}}{\cos 20^{\circ}}\)
\(\tan 20^{\circ}\)