Latihan Jumlah dan Selisih Sudut 01

Soal 1

Nilai \(\cos 15^{\circ} = \dotso\)

(A)  \(\dfrac{1}{2}(\sqrt{3} + \sqrt{2})\)

(B)  \(\dfrac{1}{4}(\sqrt{6} \:-\: \sqrt{2})\)

(C)  \(\dfrac{1}{4}(\sqrt{6} + \sqrt{2})\)

(D)  \(\dfrac{1}{4}(\sqrt{7} + \sqrt{2})\)

(E)  \(\dfrac{1}{4}(\sqrt{8} + \sqrt{3})\)

 

Soal 2

Nilai \(\tan 105^{\circ} = \dotso\)

(A)   \(-2 + \sqrt{3}\)

(B)   \(-2\:-\:\sqrt{3}\)

(C)  \(-1\:-\:\sqrt{3}\)

(D)   \(1\:-\:\sqrt{3}\)

(E)   \(2\:-\:\sqrt{3}\)

 

Soal 3

Pada segitiga siku-siku ABC, diketahui bahwa \(\sin \text{A}\sin \text{B} = \dfrac{2}{5}\) dan \(\sin \text{(A − B)} = \dfrac{1}{5}a\). Nilai \(a = \dotso\)

(A)  1

(B)  2

(C)  3

(D)  4

(E)  5

 

Soal 4

Diketahui dalam  segitiga lancip ABC, \(\sin \text{C} = \dfrac{2}{13}\sqrt{13}\) dan \(\tan \text{A}\cdot \tan \text{B} = 13\). Nilai \(\tan \text{A} + \tan \text{B} = \dotso\)

(A)   5

(B)   6

(C)   7

(D)   8

(E)   9

 

Soal 5

Jika \(\cos (\text{A − B}) = \dfrac{3}{5}\) dan \(\cos (\text{A + B}) = \dfrac{2}{3}\), maka \(\tan \text{A} \cdot \tan \text{B} = \dotso\)

(A)  \(-\dfrac{1}{19}\)

(B)  \(-\dfrac{2}{19}\)

(C)  \(\dfrac{1}{19}\)

(D)  \(\dfrac{2}{19}\)

(E)  \(\dfrac{3}{19}\)

 

Soal 6

Jika \(\tan (x + y) = 1\) dan \(\tan (2x + y) = \sqrt{3}\), dengan \(x\) dan \(y\) sudut lancip, maka nilai \(\tan (3x + 2y) = \dotso\)

(A)  \(-2\:-\:\sqrt{3}\)

(B)  \(-1\:-\:\sqrt{3}\)

(C)  \(-1 + \sqrt{3}\)

(D)  \(1\:-\:\sqrt{2}\)

(E)  \(2\:-\:\sqrt{5}\)