Latihan Turunan Fungsi Aljabar 01

Soal 01

Jika \(f(x) = 2x^2 + ax \:-\:b\) dan \(f(2) = 8\), \(f'(1) = 5\), maka nilai \(a + b = \dotso\)

(A)  1

(B)  2

(C)  3

(D)  4

(E)  5

 

Soal 02

Diketahui \(f(x) = \dfrac{x^2 + 4}{4x + 1}\). Jika \(f'(x)\) menyatakan turunan pertama \(f(x)\), maka \(f(0) + f'(0) = \dotso\)

(A)  \(-12\)

(B)  \(-11\)

(C)  \(-10\)

(D)  \(9\)

(E)  \(12\)

 

Soal 03

Bila \(f(x) = \dfrac{(x^2 \:-\:4x + 2)^3}{2x + 1}\) maka \(f'(x) = \dotso\)

(A)  \(\dfrac{2(x^2 + 4x + 2)^2(5x^2\:-\:5x\:-\:8)}{(2x + 1)^2}\)

(B)  \(\dfrac{2(x^2\:-\:4x + 2)^2(5x^2\:-\:5x\:-\:8)}{(2x + 1)^2}\)

(C)  \(\dfrac{4(x^2\:-\:4x + 2)^2(5x^2\:-\:5x\:-\:8)}{(2x + 1)^2}\)

(D)  \(\dfrac{2(x^2\:-\:4x + 2)^2(5x^2\:-\:5x\:-\:8)}{(2x \:-\: 1)^2}\)

(E)  \(\dfrac{2(x^2\:-\:4x + 2)(5x^2\:-\:5x\:-\:8)}{(2x + 1)^3}\)

 

Soal 04

Turunan pertama dari \(y = \sqrt[3] {6x^2 + 9x}\) adalah…

(A)  \(\dfrac{x + 3}{\sqrt[3] {(3x^2 + 2x)^2}}\)

(B)  \(\dfrac{2x + 3}{\sqrt[3] {(3x^2 + 9x)^2}}\)

(C)  \(\dfrac{4x + 1}{\sqrt[3] {(6x^2 + 9x)^2}}\)

(D)  \(\dfrac{4x \:-\: 3}{\sqrt[3] {(6x^2 + 9x)^2}}\)

(E)  \(\dfrac{4x + 3}{\sqrt[3] {(6x^2 + 9x)^2}}\)

 

Soal 05

Jika \(y = 4u^5\), \(u = 2v\:-\:1\), dan \(v = \sqrt[4]{x} + 5\), maka \(\dfrac{dy}{dx} = \dotso\)

(A)  \(\dfrac{5(2\sqrt[4] {x} + 9)^3}{\sqrt[4] {x^3}}\)

(B)  \(\dfrac{10(\sqrt[4] {x} \:-\: 9)^4}{\sqrt[4] {x^3}}\)

(C)  \(\dfrac{10(2\sqrt[4] {x} + 9)^4}{\sqrt[4] {x^3}}\)

(D)  \(\dfrac{12(2\sqrt[4] {x} + 9)^4}{\sqrt[4] {x^3}}\)

(E)  \(\dfrac{15(2\sqrt[4] {x} + 9)^4}{\sqrt[4] {x^3}}\)

 

Soal 06

Jika \(f(x) = \dfrac{6}{x^3}\), maka \(\lim\limits_{h \rightarrow 0} \dfrac{f(3x + 2h)\:-\:f(3x)}{h} = \dotso\)

(A)  \(-\dfrac{4}{9x^4}\)

(B)  \(-\dfrac{8}{9x^4}\)

(C)  \(-\dfrac{16}{9x^4}\)

(D)  \(-\dfrac{4}{3x^4}\)

(E)  \(-\dfrac{8}{3x^4}\)

 

Soal 07

Turunan pertama dari \(f(x) = (5x\:-\:2)^3(3x\:-\:1)^5\) adalah…

(A)  \(f'(x) = 10(8x\:-\:3)(5x\:-\:2)^2 (3x\:-\:1)^4\)

(B)  \(f'(x) = 12(8x\:-\:3)(5x\:-\:2)^2 (3x\:-\:1)^4\)

(C)  \(f'(x) = 15(8x\:-\:3)(5x\:-\:2)^2 (3x\:-\:1)^4\)

(D)  \(f'(x) = 16(8x\:-\:3)(5x\:-\:2)^2 (3x\:-\:1)^4\)

(E)  \(f'(x) = 18(8x\:-\:3)(5x\:-\:2)^2 (3x\:-\:1)^4\)

Soal 08

Jika \(f(x) = \sqrt{\dfrac{2x\:-\:5}{3x + 1}}\), maka \(f'(x) = \dotso\)

(A)  \(\dfrac{15}{2(3x+1)\sqrt{(2x\:-\:5)(3x + 1)}}\)

(B)  \(\dfrac{16}{2(3x+1)\sqrt{(2x\:-\:5)(3x + 1)}}\)

(C)  \(\dfrac{17}{2(3x+1)\sqrt{(2x\:-\:5)(3x + 1)}}\)

(D)  \(\dfrac{18}{2(3x+1)\sqrt{(2x\:-\:5)(3x + 1)}}\)

(E)  \(\dfrac{19}{2(3x+1)\sqrt{(2x\:-\:5)(3x + 1)}}\)

 

Soal 09

Jika \(f(x) = \sqrt{(8x + 2)(4x^2\:-\:1)}\), maka \(f'(x) = \dotso\)

(A)  \(\dfrac{48x^2 + 4x\:-\:4}{\sqrt{(8x + 2)(4x^2\:-\:1)}}\)

(B)  \(\dfrac{43x^2 + 8x\:-\:4}{\sqrt{(8x + 2)(4x^2\:-\:1)}}\)

(C)  \(\dfrac{48x^2 \:-\: 8x\:-\:4}{\sqrt{(8x + 2)(4x^2\:-\:1)}}\)

(D)  \(\dfrac{48x^2 + 8x\:-\:4}{\sqrt{(8x + 2)(4x^2\:-\:1)}}\)

(E)  \(\dfrac{49x^2 + 8x\:-\:4}{\sqrt{(8x + 2)(4x^2\:-\:1)}}\)

 

Soal 10

Diketahui \(f(x) = \dfrac{4x + 3}{6x\:-\:2}\), jika \(f'(x) = \dfrac{-A}{(Bx\:-\:2)^2}\) maka \(A\:-\:B = \dotso\)

(A)  10

(B)  12

(C)  15

(D)  18

(E)  20

 

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *