Soal 1
Suatu variabel acak X memiliki fungsi sebagai berikut:
$$f(x) = \begin{cases}-\frac{3}{4}x(x-2) &, 0\leqslant x \leqslant 2\\0 & ,\text{untuk x yang lain}\end{cases}$$
Tunjukkan bahwa \(f(x)\) adalah suatu fungsi padat peluang.
\(f(x)\) adalah suatu fungsi padat peluang jika memenuhi:
- \(f(x) \geqslant 0, \text{ untuk setiap nilai x}\)
- \(\int_{-\infty}^{\infty} f(x) \text{ dx} = 1\)
\(f(x)\) selalu bernilai positif untuk setiap nilai x, misalkan kita ambil:
\(x = -1 \longrightarrow f(-1) = 0\)
\(x = 0 \longrightarrow f(0) = -\frac{3}{4}(0)(0 -2) = 0\)
\(x = 1 \longrightarrow f(2) = -\frac{3}{4}(1)(1 -2) = \frac{3}{4}\)
\(\text{dan seterusnya…}\)
Selanjutnya, akan ditunjukkan \(\int_{0}^{2}-\frac{3}{4}x(x-2)\text{ dx} = 1\)
\( \int_{0}^{2} -\frac{3}{4}x^2 + \frac{3}{2}x \text{ dx}\)
\(\left. (-\frac{1}{4}x^3 + \frac{3}{4}x^2) \right |_{0}^{2}\)
\(-\frac{1}{4}(2)^3 + \frac{3}{4}(2)^2 – 0\)
\(-2 + 3\)
\(1\)
Karena \(f(x)\geqslant 0, \text{ untuk setiap x}\) dan \(\int_{0}^{2}(-\frac{3}{4}x(x-2))\text{ dx} = 1\), maka \(f(x)\) adalah suatu fungsi padat peluang
Soal 2
Diketahui variabel acak kontinu X memiliki fungsi padat peluang sebagai berikut:
$$f(x) = \begin{cases}a(6-2x) & , 0\leqslant x \leqslant 1\\0 &, \text{untuk x yang lain}\end{cases}$$
Tentukan:
a. Nilai \(a\)
b. \(\text{P}(X \leqslant 0,8)\)
Penyelesaian (a)
Karena \(f(x)\) merupakan fungsi padat peluang maka \(\int_{-\infty}^{\infty} f(x) \text{ dx} = 1\)
\(\int_{0}^{1} a(6-2x) \text{ dx} = 1\)
\(\int_{0}^{1} 6a – 2ax \text{ dx} = 1\)
\(\left. 6ax – ax^2 \right |_{0}^{1}= 1\)
\(6a(1) – a(1)^2 – 0 = 1\)
\(6a – a = 1\)
\(5a = 1\)
\(a = \frac{1}{5}\)
Penyelesaian (b)
\(\text{P}(X \leqslant 0,8) = \int_{0}^{0,8} \frac{1}{5}(6-2x) \text{ dx}\)
\(\int_{0}^{0,8} \frac{6}{5} – \frac{2}{5}x \text{ dx}\)
\(\left.(\frac{6}{5}x – \frac{1}{5}x^2) \right |_{0}^{0,8} \)
\(\frac{6}{5}(0,8) – \frac{1}{5}(0,8)^2 – 0\)
\(0,96 – 0,128\)
\(0,832\)
Soal 3
Diketahui variabel acak kontinu X memiliki fungsi padat peluang sebagai berikut:
$$f(x) = \begin{cases}\frac{b}{x^2} & ,3\leqslant x \leqslant 6\\0 &, \text{untuk x yang lain}\end{cases}$$
Tentukan:
a. Nilai \(b\)
b. \(\text{P}(X \geqslant 4)\)
c. \(\text{P}(3\leqslant X \leqslant 5)\)
Penyelesaian (a)
Karena \(f(x)\) merupakan fungsi padat peluang maka \(\int_{-\infty}^{\infty} f(x) \text{ dx} = 1\)
\(\int_{3}^{6} \frac{b}{x^2}\text{ dx} = 1\)
\(\int_{3}^{6} b\cdot x^{-2}\text{ dx} = 1\)
\(\left.\frac{b}{-1}\cdot x^{-1}\right |_{3}^{6}= 1\)
\(\left.\frac{-b}{x}\right |_{3}^{6}= 1\)
\(\frac{-b}{6} -\frac{-b}{3}= 1\:\:\:\:\:\color{blue}\text{samakan penyebut}\)
\(\frac{-b}{6}+\frac{2b}{6} = 1\)
\(\frac{b}{6} = 1\)
\(b = 6\)
Penyelesaian (b)
\(\text{P}(X \geqslant 4) = \int_{4}^{6} \frac{6}{x^2} \text{ dx}\)
\(\int_{4}^{6} 6\cdot x^{-2}\text{ dx}\)
\(\left.\frac{6}{-1}x^{-1}\right |_{4}^{6}\)
\(\left.\frac{-6}{x}\right |_{4}^{6}\)
\(\frac{-6}{6} – \frac{-6}{4}\)
\(- 1 + \frac{3}{2}\)
\(\frac{1}{2}\)
Penyelesaian (c)
\(\text{P}(3\leqslant X \leqslant 5) = \int_{3}^{5} \frac{6}{x^2} \text{ dx}\)
\(\int_{3}^{5} 6\cdot x^{-2}\text{ dx}\)
\(\left.\frac{6}{-1}x^{-1}\right |_{3}^{5}\)
\(\left.\frac{-6}{x}\right |_{3}^{5}\)
\(\frac{-6}{5} – (\frac{-6}{3})\)
\(\frac{-6}{5} + 2\)
\(0,8\)
Soal 4
Suatu variabel acak kontinu, X, memiliki fungsi padat peluang sebagai berikut:
$$f(x) = \begin{cases}0,2 e^{-0,2x} & x \geqslant 0\\0 & \text{nilai x yang lain}\end{cases}$$
Dari variabel acak X tersebut, tentukan nilai:
a. Rata-rata
b. Median
c. Modus
d. Ragam/variansi
e. Simpangan baku
a. Rata-rata
\(\text{Rata-rata} = \int_{-\infty}^{\infty} x\cdot \text{f(x)} \text{ dx}\)
\(\int_{-\infty}^{0}\text{ dx} + \int_{0}^{\infty} 0,2x\cdot e^{-0,2x} \text{ dx}\)
\(\left. x \right |_{-\infty}^{0}+ \int_{0}^{\infty} 0,2x\cdot e^{-0,2x} \text{ dx}\)
\(0 + \int_{0}^{\infty} 0,2x\cdot e^{-0,2x} \text{ dx}\)
\(\text{Gunakan integral parsial}\)
\(\int u\cdot \text{ dv} = uv – \int v \cdot \text{ du}\)
\(\text{misalkan: }\)
\(\text{u } = 0,2x \longrightarrow \text{du} = 0,2 \text{ dx}\)
\(\text{dv } = e^{-0,2x} \text{ dx}\longrightarrow \text{v } = \int e^{-0,2x} \text{ dx}\)
\(\text{v } = -\frac{1}{0,2}e^{-0,2x}\)
\(\int_{0}^{\infty} 0,2x\cdot e^{-0,2x} \text{ dx} \)
\(\left. 0,2x\cdot (-\frac{1}{0,2}e^{-0,2x})\right |_{0}^{\infty}-\int_{0}^{\infty} (-\frac{1}{0,2}e^{-0,2x})\cdot 0,2 \text{ dx}\)
\(\left.(-xe^{-0,2x})\right |_{0}^{\infty} +\int_{0}^{\infty} e^{-0,2x}\text{ dx}\)
\(0 + \left.\frac{1}{-0,2}e^{-0,2x}\right|_{0}^{\infty} \)
\(0 – (-\frac{10}{2})\)
\(5\)
\(\text{Jadi nilai rata-ratanya adalah 5 }\)
b. Median
\(\text{Median } = P(X \leq m)= 0,5\)
\(\int_{0}^{m} 0,2 e^{-0,2x} \text{ dx} = 0,5\)
\(\left. – e^{-0,2x}\right |_{0}^{m} = 0,5\)
\(- e^{-0,2m} – (-1) = 0,5\)
\(- e^{-0,2m} = 0,5 – 1\)
\(- e^{-0,2m} = -0,5\)
\(e^{-0,2m} = 0,5\)
\(^e \log 0,5 = -0,2m\)
\(-0,693 = -0,2m\)
\(m = \frac{0,693}{0,2}\)
\(m = 3,465\)
\(\text{Jadi nilai mediannya 3,465}\)
c. Modus
Fungsi padat peluang \(f(x) = 0,2 e^{-0,2x}\) pada interval \(x \geqslant 0\) memiliki nilai maksimum 0,2 untuk \(x = 0\), sehingga nilai modusnya adalah 0.
c. Ragam/variansi
\(\text{Ragam} = \int_{a}^{b} x^2\cdot \text{f(x)} \text{ dx} – (\int_{a}^{b} x\cdot \text{f(x)} \text{ dx} )^2\)
\(\int_{0}^{\infty} 0,2x^2 e^{-0,2x} \text{ dx} – (\int_{0}^{\infty} 0,2x e^{-0,2x} \text{ dx} )^2\)
\(\int_{0}^{\infty} 0,2x^2 e^{-0,2x} \text{ dx} – (5)^2\)
\(\int_{0}^{\infty} 0,2x^2 e^{-0,2x} \text{ dx} – 25\)
\(\text{Menghitung } \int_{0}^{\infty} 0,2x^2 e^{-0,2x} \text{ dx}\)
\(\text{Gunakan integral parsial}\)
\(\int u\cdot \text{ dv} = uv – \int v \cdot \text{ du}\)
\(\text{misalkan: }\)
\(\text{u } = 0,2x^2 \longrightarrow \text{du} = 0,4x \text{ dx}\)
\(\text{dv } = e^{-0,2x} \text{ dx}\longrightarrow \text{v } = \int e^{-0,2x} \text{ dx}\)
\(\text{v } = -\frac{1}{0,2}e^{-0,2x}\)
\(\int_{0}^{\infty} 0,2x^2 e^{-0,2x} \text{ dx}\)
\(\left. 0,2x^2\cdot (-\frac{1}{0,2}e^{-0,2x})\right |_{0}^{\infty}-\int_{0}^{\infty} (-\frac{1}{0,2}e^{-0,2x})\cdot 0,4x \text{ dx}\)
\(\left. (-x^2\cdot e^{-0,2x})\right |_{0}^{\infty}+ \int_{0}^{\infty} 2x\cdot e^{-0,2x} \text{ dx}\)
\(0 + \int_{0}^{\infty} 2x\cdot e^{-0,2x} \text{ dx}\)
\(\int_{0}^{\infty} 2x\cdot e^{-0,2x} \text{ dx}\)
\(\text{Menghitung }\int_{0}^{\infty} 2x\cdot e^{-0,2x} \text{ dx}\)
\(\int u\cdot \text{ dv} = uv – \int v \cdot \text{ du}\)
\(\text{misalkan: }\)
\(\text{u } = 2x \longrightarrow \text{du} = 2\text{ dx}\)
\(\text{dv } = e^{-0,2x} \text{ dx}\longrightarrow \text{v } = \int e^{-0,2x} \text{ dx}\)
\(\text{v } = -\frac{1}{0,2}e^{-0,2x}\)
\(\int_{0}^{\infty} 2x\cdot e^{-0,2x} \text{ dx}\)
\(\left. 2x\cdot (-\frac{1}{0,2}e^{-0,2x})\right |_{0}^{\infty}-\int_{0}^{\infty} (-\frac{1}{0,2}e^{-0,2x})\cdot 2 \text{ dx}\)
\(0 + 10\int_{0}^{\infty} e^{-0,2x}\text{ dx}\)
\(\left. (10 \cdot \frac{1}{-0,2} e^{-0,2x}) \right |_{0}^{\infty}\)
\(0 + 50\)
\(50\)
\(\text{Jadi, }\int_{0}^{\infty} 0,2x^2 e^{-0,2x} \text{ dx} = 50\)
\(\text{Ragam} = \int_{0}^{\infty} 0,2x^2 e^{-0,2x} \text{ dx} – 25\)
\(\text{Ragam} = 50 – 25\)
\(\text{Ragam} = 25\)
d. Simpangan Baku
\(\text{Simpangan baku} = \sqrt{\text{variansi}}\)
\(\text{Simpangan baku} = \sqrt{25}\)
\(\text{Simpangan baku} = 5\)
Soal 5
Suatu variabel acak kontinu, X, memiliki fungsi padat peluang sebagai berikut:
$$f(x) = \begin{cases}\frac{1}{100}x &, 0\leqslant x \leqslant 10\\-\frac{1}{100}(x – 20) &, 10 < x \leqslant 20 \\0 &, \text{untuk x yang lain}\end{cases}$$
Dari variabel acak X tersebut, tentukan:
a. Fungsi distribusi kumulatif
b. Kuartil bawah \((Q_{1})\)
c. Kuartil atas \((Q_{3})\)
d. Persentil ke-80 \((\text{P}_{80})\)
Penyelesaian (a)
Suatu fungsi distribusi kumulatif, \(\text{F}(x)\) bernilai sama dengan \(\text{P}(X \leqslant x)\)
Untuk interval \(0\leqslant x \leqslant 10\)
\(\text{F}(x) = \int_{0}^{x} \frac{1}{100}x \text{ dx}\)
\(\left. \frac{1}{200}x^2 \right |_{0}^{x}\)
\(\frac{1}{200}x^2 – 0\)
\(\frac{1}{200}x^2 \)
\(\text{F}(10) = \frac{1}{200}(10)^2 \)
\(\text{F}(10) = \frac{1}{2}\)
Untuk interval \(10 < x \leqslant 20\)
\(\text{F}(x) = \text{F}(10) + \int_{10}^{x} -\frac{1}{100}(x – 20) \text{ dx} \)
\(\frac{1}{2} + \int_{10}^{x} -\frac{1}{100}x + \frac{1}{5} \text{ dx}\)
\(\left. \frac{1}{2} + (-\frac{1}{200}x^2 + \frac{1}{5}x)\right |_{10}^{x}\)
\(\frac{1}{2} -\frac{1}{200}x^2 + \frac{1}{5}x – (-\frac{1}{200}(10)^2 + \frac{1}{5}(10)) \)
\(\frac{1}{2} -\frac{1}{200}x^2 + \frac{1}{5}x + \frac{1}{2} – 2 \)
\(-\frac{1}{200}x^2 + \frac{1}{5}x – 1\)
\(\text{F}(20) = -\frac{1}{200}(20)^2 + \frac{1}{5}(20) – 1\)
\(\text{F}(20) = -2 + 4 – 1\)
\(\text{F}(20) = 1\)
$$\bbox[yellow, 5px]{\text{F}(x) = \begin{cases} 0 &, x < 0\\ \frac{1}{200}x^2 &, 0\leqslant x \leqslant 10\\ -\frac{1}{200}x^2 + \frac{1}{5}x – 1 &, 10 < x \leqslant 20 \\1 &, x > 20\end{cases}}$$
Penyelesaian b
\(Q_{1} = \text{F}(x) = 0.25\)
\(\frac{1}{200}x^2 = 0.25\)
\(x^2 = 50\)
\(x = \pm \sqrt{50}\)
\(x = + 5\sqrt{2}\)
\(Q_{1} = 5\sqrt{2}\)
Penyelesaian c
\(Q_{3} = \text{F}(x) = 0,75\)
\(-\frac{1}{200}x^2 + \frac{1}{5}x – 1 = 0,75\:\:\:\:\:\color{blue}\text{kalikan kedua ruas dengan -200}\)
\(x^2 – 40x + 200 = -150\)
\(x^2 – 40x + 350 = 0\)
\(x_1 = 27,07\:\:\:\:\:\color{blue}\text{tidak memenuhi karena di atas 20}\)
\(x_2 = 12,93\)
\(Q_{3} = 12,93\)
Penyelesaian d
\(\text{P}_{80} = \text{F}(x) = 0,80\)
\(-\frac{1}{200}x^2 + \frac{1}{5}x – 1 = 0,80\:\:\:\:\:\color{blue}\text{kalikan kedua ruas dengan -200}\)
\(x^2 – 40x + 200 = -160\)
\(x^2 – 40x + 360 = 0\)
\(x_1 = 26,32\:\:\:\:\:\color{blue}\text{tidak memenuhi karena di atas 20}\)
\(x_2 = 13,68\)
\(\text{P}_{80} = 13,68\)