Quiz-summary
0 of 7 questions completed
Pertanyaan:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
Information
Dear Students,
Welcome to today’s quiz! This is your opportunity to demonstrate what you’ve learned so far, so do your best. Please keep in mind that you have a maximum of 40 minutes to complete all the questions. Make sure to manage your time wisely and answer each question thoughtfully.
Good luck!
Anda telah menyelesaikan kuis sebelumnya. Oleh karena itu, Anda tidak dapat memulainya lagi.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Hasil
0 dari 7 pertanyaan terjawab dengan benar
Waktu Anda:
Time has elapsed
Anda telah meraih 0 dari 0 poin, (0)
Categories
- Not categorized 0%
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- Dijawab
- Ragu-Ragu
-
Pertanyaan 1 dari 7
1. Pertanyaan
1 pointsJika rata-rata dari \(a, b, c\) dan \(a^2, b^2, c^2\) berturut-turut adalah 2 dan 4, maka rata-rata dari \(ab, bc, ca\) adalah …
Benar
Rata-rata dari \(a, b, c\) adalah 2
\(\dfrac{a + b + c}{3} = 2\)
\(a + b + c = 6\dotso\color{blue}(1)\)
Rata-rata dari \(a^2, b^2, c^2\) adalah 4
\(\dfrac{a^2 + b^2 + c^2}{3} = 4\)
\(a^2 + b^2 + c^2 = 12\dotso\color{blue}(2)\)
Rata-rata dari \(ab, bc, ca\) adalah \(\dfrac{ab + bc + ca}{3}\)
\(\color{blue} a^2 + b^2 + c^2 = (a + b + c)^2\:-\:2(ab + ac + bc)\)
\(12 = 6^2\:-\:2(ab + ac + bc)\)
\(12 = 36\:-\:2(ab + ac + bc)\)
\(-24 = -2(ab + ac + bc)\)
\(ab + ac + bc = 12\)
Rata-rata dari \(ab, bc, ca\) adalah \(\dfrac{12}{3} = 4\)
Salah
Rata-rata dari \(a, b, c\) adalah 2
\(\dfrac{a + b + c}{3} = 2\)
\(a + b + c = 6\dotso\color{blue}(1)\)
Rata-rata dari \(a^2, b^2, c^2\) adalah 4
\(\dfrac{a^2 + b^2 + c^2}{3} = 4\)
\(a^2 + b^2 + c^2 = 12\dotso\color{blue}(2)\)
Rata-rata dari \(ab, bc, ca\) adalah \(\dfrac{ab + bc + ca}{3}\)
\(\color{blue} a^2 + b^2 + c^2 = (a + b + c)^2\:-\:2(ab + ac + bc)\)
\(12 = 6^2\:-\:2(ab + ac + bc)\)
\(12 = 36\:-\:2(ab + ac + bc)\)
\(-24 = -2(ab + ac + bc)\)
\(ab + ac + bc = 12\)
Rata-rata dari \(ab, bc, ca\) adalah \(\dfrac{12}{3} = 4\)
-
Pertanyaan 2 dari 7
2. Pertanyaan
1 pointsDIketahui \(f(x) = x^2 + 1\) dan \(g(x) = ax + 2\), dengan \(a \neq 0\). Jika \((f \circ g^{-1})(1) = 5\), maka \(4a^2\:-\:3 = \dotso\)
Benar
\(g(x) = ax + 2\)
\(y = ax + 2\)
\(x = \dfrac{y\:-\:2}{a}\)
\(g^{-1}(x) = \dfrac{x\:-\:2}{a}\)
\(g^{-1}(1) = \dfrac{1\:-\:2}{a}\)
\(g^{-1}(1) = -\dfrac{1}{a}\)
\((f \circ g^{-1})(1) = 5\)
\(f[g^{-1}(1)] = 5\)
\(f(-\dfrac{1}{a}) = 5\)
\((-\dfrac{1}{a})^2 + 1 = 5\)
\(\dfrac{1}{a^2} \:-\:4 = 0\)
\(\left(\dfrac{1}{a} + 2\right)\left(\dfrac{1}{a} \:-\: 2\right) = 0\)
\(\dfrac{1}{a} + 2 = 0\)
\(a = -\dfrac{1}{2}\)
\(4a^2 \:-\:3 = 4\left(-\dfrac{1}{2}\right)^2\:-\:3\)
\(4a^2 \:-\:3 = 1\:-\:3\)
\(4a^2 \:-\:3 = -2\)
Salah
\(g(x) = ax + 2\)
\(y = ax + 2\)
\(x = \dfrac{y\:-\:2}{a}\)
\(g^{-1}(x) = \dfrac{x\:-\:2}{a}\)
\(g^{-1}(1) = \dfrac{1\:-\:2}{a}\)
\(g^{-1}(1) = -\dfrac{1}{a}\)
\((f \circ g^{-1})(1) = 5\)
\(f[g^{-1}(1)] = 5\)
\(f(-\dfrac{1}{a}) = 5\)
\((-\dfrac{1}{a})^2 + 1 = 5\)
\(\dfrac{1}{a^2} \:-\:4 = 0\)
\(\left(\dfrac{1}{a} + 2\right)\left(\dfrac{1}{a} \:-\: 2\right) = 0\)
\(\dfrac{1}{a} + 2 = 0\)
\(a = -\dfrac{1}{2}\)
\(4a^2 \:-\:3 = 4\left(-\dfrac{1}{2}\right)^2\:-\:3\)
\(4a^2 \:-\:3 = 1\:-\:3\)
\(4a^2 \:-\:3 = -2\)
-
Pertanyaan 3 dari 7
3. Pertanyaan
1 pointsNilai \(\lim\limits_{x \rightarrow 1} \dfrac{x\:-\:1 + \sqrt[3]{1\:-\:x}}{\sqrt[3]{1\:-\:x^2}}\) adalah…
Benar
\(\lim\limits_{x \rightarrow 1} \dfrac{x\:-\:1 + \sqrt[3]{1\:-\:x}}{\sqrt[3]{1\:-\:x^2}}\)
\(\lim\limits_{x \rightarrow 1} \dfrac{\sqrt[3]{1\:-\:x}\cdot [-(1\:-\:x)^{\frac{2}{3}} + 1]}{\sqrt[3]{1\:-\:x}\cdot \sqrt[3]{1 + x}}\)
\(\lim\limits_{x \rightarrow 1} \dfrac{\cancel{\sqrt[3]{1\:-\:x}}\cdot [-(1\:-\:x)^{\frac{2}{3}} + 1]}{\cancel{\sqrt[3]{1\:-\:x}}\cdot \sqrt[3]{1 + x}}\)
\(\lim\limits_{x \rightarrow 1} \dfrac{-(1\:-\:x)^{\frac{2}{3}} + 1}{\sqrt[3]{1 + x}}\)
\(\dfrac{-(1\:-\:1)^{\frac{2}{3}} + 1}{\sqrt[3]{1 + 1}}\)
\(\dfrac{1}{\sqrt[3]{2}}\)
Salah
\(\lim\limits_{x \rightarrow 1} \dfrac{x\:-\:1 + \sqrt[3]{1\:-\:x}}{\sqrt[3]{1\:-\:x^2}}\)
\(\lim\limits_{x \rightarrow 1} \dfrac{\sqrt[3]{1\:-\:x}\cdot [-(1\:-\:x)^{\frac{2}{3}} + 1]}{\sqrt[3]{1\:-\:x}\cdot \sqrt[3]{1 + x}}\)
\(\lim\limits_{x \rightarrow 1} \dfrac{\cancel{\sqrt[3]{1\:-\:x}}\cdot [-(1\:-\:x)^{\frac{2}{3}} + 1]}{\cancel{\sqrt[3]{1\:-\:x}}\cdot \sqrt[3]{1 + x}}\)
\(\lim\limits_{x \rightarrow 1} \dfrac{-(1\:-\:x)^{\frac{2}{3}} + 1}{\sqrt[3]{1 + x}}\)
\(\dfrac{-(1\:-\:1)^{\frac{2}{3}} + 1}{\sqrt[3]{1 + 1}}\)
\(\dfrac{1}{\sqrt[3]{2}}\)
-
Pertanyaan 4 dari 7
4. Pertanyaan
1 pointsDiberikan \(f(x) = (ax^2 + bx + c)(x^2 + x)\). Jika \(f'(0) = 3\) dan \(f'(-1) = 10\), maka \(f'(-\frac{1}{2}) = \dotso\)
Benar
\(f(x) = (ax^2 + bx + c)(x^2 + x)\)
\(u = ax^2 + bx + c \rightarrow u’ = 2ax + b\)
\(v = x^2 + x \rightarrow v’ = 2x + 1\)
\(f'(x) = u’\cdot v + u\cdot v’\)
\(f'(x) = (2ax + b)(x^2 + x) + (ax^2 + bx + c)(2x + 1)\)
\(f'(0) = (2a(0) + b)(0^2 + 0) + (a(0)^2 + b(0) + c)(2(0) + 1)\)
\(3 = 0 + c\)
\(c = 3\)
\(f'(-1) = (-2a + b)((-1)^2 \:-\:1) + (a(-1)^2 \:-\:b + c)(-2 + 1)\)
\(f'(-1) = 0 + (a \:-\:b + c)(-1)\)
\(10 = -a + b \:-\:c\)
\(10 = -a + b \:-\:3\)
\(-a + b = 13\)
\(f'(-\frac{1}{2}) = (2a(-\frac{1}{2}) + b)((-\frac{1}{2})^2\:-\:\frac{1}{2}) + (a(-\frac{1}{2})^2 \:-\:\frac{1}{2}b + c)(2(-\frac{1}{2}) + 1)\)
\(f'(-\frac{1}{2}) = (-a + b)(\frac{1}{4}\:-\:\frac{1}{2}) + 0\)
\(f'(-\frac{1}{2}) = 13(-\frac{1}{4})\)
\(f'(-\frac{1}{2}) =-\frac{13}{4}\)
Salah
\(f(x) = (ax^2 + bx + c)(x^2 + x)\)
\(u = ax^2 + bx + c \rightarrow u’ = 2ax + b\)
\(v = x^2 + x \rightarrow v’ = 2x + 1\)
\(f'(x) = u’\cdot v + u\cdot v’\)
\(f'(x) = (2ax + b)(x^2 + x) + (ax^2 + bx + c)(2x + 1)\)
\(f'(0) = (2a(0) + b)(0^2 + 0) + (a(0)^2 + b(0) + c)(2(0) + 1)\)
\(3 = 0 + c\)
\(c = 3\)
\(f'(-1) = (-2a + b)((-1)^2 \:-\:1) + (a(-1)^2 \:-\:b + c)(-2 + 1)\)
\(f'(-1) = 0 + (a \:-\:b + c)(-1)\)
\(10 = -a + b \:-\:c\)
\(10 = -a + b \:-\:3\)
\(-a + b = 13\)
\(f'(-\frac{1}{2}) = (2a(-\frac{1}{2}) + b)((-\frac{1}{2})^2\:-\:\frac{1}{2}) + (a(-\frac{1}{2})^2 \:-\:\frac{1}{2}b + c)(2(-\frac{1}{2}) + 1)\)
\(f'(-\frac{1}{2}) = (-a + b)(\frac{1}{4}\:-\:\frac{1}{2}) + 0\)
\(f'(-\frac{1}{2}) = 13(-\frac{1}{4})\)
\(f'(-\frac{1}{2}) =-\frac{13}{4}\)
-
Pertanyaan 5 dari 7
5. Pertanyaan
1 pointsDiberikan bilangan real \(r\), dengan \(0 < r < 1\). Jika jumlah deret geometri tak hingga dengan suku pertama 2 dan rasio \(\dfrac{1}{1 + r}\) adalah 8, maka jumlah deret geometri tak hingga dengan suku pertama 8 dan rasio \(r\) adalah…
Benar
Jumlah deret geometri tak hingga \(\color{blue} s_{\infty} = \dfrac{a}{1\:-\:r}\)
\(8 = \dfrac{2}{1\:-\:(\frac{1}{1 + r})}\)
\(8 = \dfrac{2}{\frac{r}{1 + r}}\)
\(8 = \dfrac{2(1 + r)}{r}\)
\(8r = 2 + 2r\)
\(6r = 2\)
\(r = \dfrac{1}{3}\)
\(s_{\infty} = \dfrac{a}{1\:-\:r}\)
\(s_{\infty} = \dfrac{8}{1\:-\:\frac{1}{3}}\)
\(s_{\infty} = \dfrac{8}{\frac{2}{3}}\)
\(s_{\infty} = 12\)
Salah
Jumlah deret geometri tak hingga \(\color{blue} s_{\infty} = \dfrac{a}{1\:-\:r}\)
\(8 = \dfrac{2}{1\:-\:(\frac{1}{1 + r})}\)
\(8 = \dfrac{2}{\frac{r}{1 + r}}\)
\(8 = \dfrac{2(1 + r)}{r}\)
\(8r = 2 + 2r\)
\(6r = 2\)
\(r = \dfrac{1}{3}\)
\(s_{\infty} = \dfrac{a}{1\:-\:r}\)
\(s_{\infty} = \dfrac{8}{1\:-\:\frac{1}{3}}\)
\(s_{\infty} = \dfrac{8}{\frac{2}{3}}\)
\(s_{\infty} = 12\)
-
Pertanyaan 6 dari 7
6. Pertanyaan
1 pointsJika \(\textbf {A} = \begin{bmatrix}1 & 2 \\0 & 1\\1 & 1 \end{bmatrix}\), \(\textbf {B} = \begin{bmatrix}1 \\ 2 \end{bmatrix}\), maka determinan dari \(\textbf{A}^{\text{t}}\textbf{A} + \textbf{B}\textbf{B}^{\text{t}}\) adalah…
Benar
\(\textbf{A}^{\text{t}}\textbf{A} + \textbf{B}\textbf{B}^{\text{t}}\)
\(\begin{bmatrix}1 & 0 & 1\\2 & 1 & 1 \end{bmatrix}\cdot \begin{bmatrix}1 & 2\\0 & 1 \\1 & 1\end{bmatrix} + \begin{bmatrix}1 \\ 2 \end{bmatrix}\cdot \begin{bmatrix}1 & 2\end{bmatrix}\)
\(\begin{bmatrix}2 & 3\\3 & 6\end{bmatrix} + \begin{bmatrix}1 & 2\\2 & 4\end{bmatrix}\)
\(\begin{bmatrix}3 & 5\\5 & 10\end{bmatrix}\)
Determinan matriks = 3(10) − 5(5)
Determinan matriks = 30 − 25 = 5
Salah
\(\textbf{A}^{\text{t}}\textbf{A} + \textbf{B}\textbf{B}^{\text{t}}\)
\(\begin{bmatrix}1 & 0 & 1\\2 & 1 & 1 \end{bmatrix}\cdot \begin{bmatrix}1 & 2\\0 & 1 \\1 & 1\end{bmatrix} + \begin{bmatrix}1 \\ 2 \end{bmatrix}\cdot \begin{bmatrix}1 & 2\end{bmatrix}\)
\(\begin{bmatrix}2 & 3\\3 & 6\end{bmatrix} + \begin{bmatrix}1 & 2\\2 & 4\end{bmatrix}\)
\(\begin{bmatrix}3 & 5\\5 & 10\end{bmatrix}\)
Determinan matriks = 3(10) − 5(5)
Determinan matriks = 30 − 25 = 5
-
Pertanyaan 7 dari 7
7. Pertanyaan
1 pointsJika \(\tan x = 2\), maka \(\dfrac{\sin x + \cos x}{\sin x \:-\:\cos x} = \dotso\)
Benar
\(\dfrac{\sin x + \cos x}{\sin x \:-\:\cos x}\)
Bagi bagian pembilang dan penyebut dengan \(\cos x\)
\(\dfrac{\tan x + 1}{\tan x \:-\:1}\)
\(\dfrac{2 + 1}{2 \:-\:1}\)
\(3\)
Salah
\(\dfrac{\sin x + \cos x}{\sin x \:-\:\cos x}\)
Bagi bagian pembilang dan penyebut dengan \(\cos x\)
\(\dfrac{\tan x + 1}{\tan x \:-\:1}\)
\(\dfrac{2 + 1}{2 \:-\:1}\)
\(3\)